Digital Signal Processing

Assoc.Prof. Lăcrimioara GRAMA, Ph.D.

http://sp.utcluj.ro/Teaching_IIIEA.html

February 27th, 2017

- Course contents
- 2 Laboratory contents
- References
- Teaching WEB page
- Grading
- 6 Where can we meet?

Course contents

Ch. | Discrete-time signals and systems

- Signals and systems: Concept of frequency in continuous-time and discrete-time signals; Discrete angular frequency; Alias effect
- Discrete-time signals: Some elementary discrete-time signals; Classification of discrete-time signals; Simple manipulations of discrete-time signals
- Discrete-time systems: Block diagram representation of discrete-time systems; Classification of discrete-time systems; Interconnection of discrete-time systems

Ch. Il Analysis of discrete-time linear time-invariant systems (LTIS)

- Convolution sum and impulse response sequence
- Causal LTIS
- Stability of LTIS
- Finite impulse response (FIR) and infinite impulse response (IIR) systems: Recursive and nonrecursive discrete-time systems; Forced and free response; LTIS characterized by constant-coefficient difference equations; IIR systems solution of linear constant-coefficient difference equations; Impulse response of an LTI recursive system
- Correlation of discrete-time signals: Crosscorrelation sequence;
 Autocorrelation sequence; Properties of the autocorrelation and crosscorrelation sequences; Correlation of periodic sequences
- Implementation of discrete-time systems direct-forms: IIR systems; FIR systems

Ch. III Frequency analysis of discrete-time signals and systems

- Fourier series discrete-time periodic signals
- Fourier transform discrete-time aperiodic signals: Definition;
 Properties
- Frequency-domain characteristics of LTIS

Ch. IV Discrete Fourier transform

- Sampling in time and frequency-domain
- Discrete Fourier transform (DFT): Definition; Properties; DFT as a linear transformation; Relationship of DFT to other transforms
- Applications of DFT: Linear filtering methods based on DFT; Frequency analysis of signal using DFT

Ch. V Fast Fourier transform

- Discrete Fourier transform remarks
- Fast Fourier transform (FFT) radix algorithms: Radix-2 FFT algorithms: decimation-in-time; Radix-2 FFT algorithms: decimation-in-frequency; Spit-radix FFT algorithms

Ch. VI z-Transform and its applications to the analysis of LTIS

- z-Transform: definition, convergence
- Inversion of z-transform
- Properties of z-transform
- Rational z-transform: Poles and zeros; System/transfer function of an LTIS
- One-sided z-transform
- Analysis of LTIS in z-domain: Response of systems with rational system functions; Causality and stability; Schür-Cohn stability test

Ch. VII Implementation of discrete-time systems

- Introduction
- Structures for FIR systems: Direct-form structure; Cascade-form structure; Frequency-sampling structure; Lattice structure
- Structures for IIR systems: Direct-form structures; Cascade-form structure; Parallel-form structure; Lattice and lattice-ladder structures

Ch. VIII Design of digital filters

- Design of filters in frequency-domain: General considerations;
 Characteristics of practical frequency-selective filters; Relationships between system function and frequency response function; LTIS as frequency-selective filters
- Design of FIR filters: Linear-phase FIR filters; Design of linear-phase FIR filters using windows; Design of linear-phase FIR filters by frequency sampling method; Design of optimum equiripple linear-phase FIR filters
- Design of IIR filters: Design of IIR filters from analog filters; Frequency transformations; Design of digital IIR filters in discrete-domain

Laboratory contents

- Introduction to MATLAB
- ② Discrete-time signals
- Sampling of analog signals
- Discrete-time LTIS
- Discrete Fourier transform
- Linear and circular convolution
- Practical exam 1
- FIR filters. Design methods
- Discrete-time LTIS as frequency selective filters
- IIR filters. Indirect design methods
- IIR filters. Direct design methods
- Structures for the realization of FIR systems
- Structures for the realization of IIR systems
- Practical exam 2. Questions

References

C. Rusu, Lăcrimioara Grama.

Lecture Notes in Digital Signal Processing. Ed. Risoprint, 2009.

Lăcrimioara Grama.

Digital Signal Processing - laboratory guide. Ed. U.T.Press, 2014.

John G. Proakis and Dimitris G. Manolakis.

Digital Signal Processing: Principles, Algorithms and Applications. Upper Saddle River. NJ: Pearson, 4th ed., 2014.

Vinay K. Ingle, John G. Proakis.

Digital Signal Processing Using MATLAB. Cengage Learning, 3rd ed., 2012.

Sanjit K. Mitra.

Digital Signal Processing: A Computer Based Approach. McGraw-Hill Book Co., New York, NY, 4th ed., 2010.

A. V. Oppenheim, R. W. Schafer.

Discrete-Time Signal Processing. Prentice Hall, 3rd ed., 2009.

Lawrence R. Rabiner, Bernard Gold.

Theory and Application of Digital Signal Processing. Prentice Hall, 1975.

References (cont.)

Lăcrimioara Grama.

Prelucrarea numerică a semnalelor - îndrumător de laborator. Ed. U.T.Press, 2014.

Lăcrimioara Grama, C. Rusu. Prelucrarea numerică a semnalelor - aplicații și probleme. Ed. U.T.Press, 2008.

Lăcrimioara Grama, A. Grama, C. Rusu. Filtre numerice - aplicații și probleme. Ed. U.T.Press, 2008.

C. Rusu.

Prelucrarea numerică a semnalelor. Ed. Risoprint, 2nd ed., 2002.

C. Rusu.

Prelucrări digitale de semnale. Ed. Mediamira, 2000.

Daniela Tărniceriu, V. Grigoraș. Prelucrarea numerică a semnalelor. Ed. "Gh. Asachi" Iași, 1995.

Teaching WEB page

- http://sp.utcluj.ro/Teaching_IIIEA.html
 - Course contents
 - Slides
 - Laboratory contents
 - Examples (implemented in MATLAB)
 - Exercises (must be implemented in MATLAB practical exams)
 - References
 - Solved problems
 - Proposed problems
 - Miscellanea

Grading

- Written exam (WE): $1 \div 10$ points 2 hours
 - 3 problems
- 2 practical exams
 - Practical exam 1 (PE1): 1 ÷ 10 points − 30 minutes
 - 7th week of the semester April 10-15, 2017 (at the laboratory class)
 - 2 exercises (must be implemented in MATLAB) from laboratory exercises
 - Practical exam 2 (PE2): 1 ÷ 10 points − 30 minutes
 - $\bullet~14^{\rm th}$ week of the semester May 29-31, June 1-2, 2017 (at the laboratory class)
 - 2 exercises (must be implemented in MATLAB) from laboratory exercises

Final mark =
$$0.6 \cdot WE + 0.2 \cdot PE1 + 0.2 \cdot PE2$$

if WE > 4 and $0.6 \cdot \text{WE} + 0.2 \cdot \text{PE1} + 0.2 \cdot \text{PE2} > 4.5$

Where can we meet?

- Course: Room P01 (G. Bariţiu street)
- 2 Laboratory: Room 367 (G. Bariţiu street)
- 3 Contact: Lacrimioara.Grama@bel.utcluj.ro