On the Optimization of SVM Kernel Parameters for Improving Audio Classification Accuracy

Lăcrimioara GRAMA, Liana TUNS, Corneliu RUSU

Signal Processing

Technical University of Cluj-Napoca

Faculty of Electronics, Telecommunications and Information Technology Basis of Electronics Department

Signal Processing Group

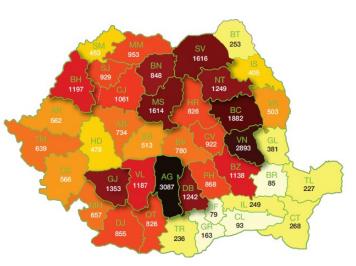
14th International Conference on Engineering of Modern Electric Systems 2017

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/ CCCDI–UEFISCDI, project number PNIII-P2-2.1-BG-2016-0378, 54BG/2016, within PNCDI III.

Outline

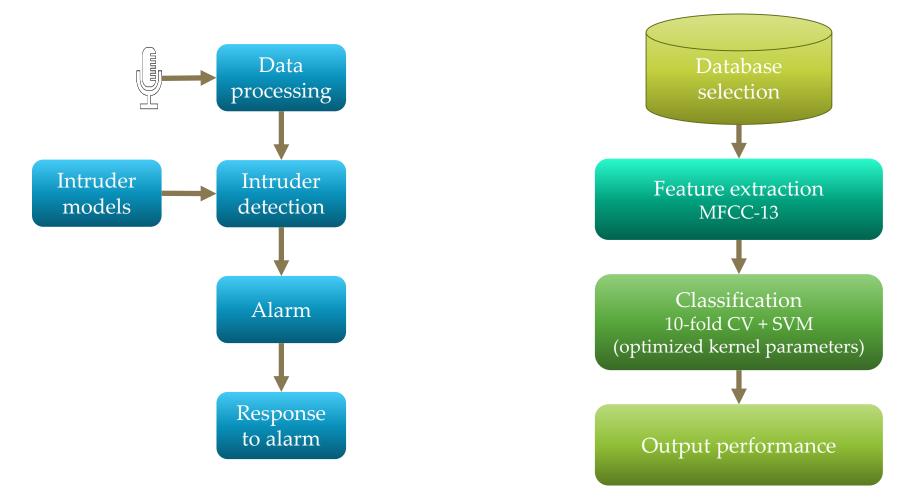
- Why this research?
- Intruder Detection System
- Wildlife Database
- Mel Frequency Cepstral Coefficients
- Support Vector Machines
- Classification by Optimizing SVM Kernel Parameters
- Results
- Conclusion

Why this research?



The number of events that imply illegal logging, hunting, or trespassing of natural reservations, parks, or forests increased so much in the past decade, that on a high demand became the design of wildlife surveillance systems

• These systems are meant to detect in time such type of unwanted activities within the protected areas and help the authorities to take an action


Why this research?

- Over 25 environmental agencies and organizations world wide, are being proactive in tracking illegal logging and hunting
- About 25 million birds are killed illegally in the Mediterranean every year, according to a first-of-its-kind scientific review carried out by *BirdLife International*
- Romania: in 2015 the authorities registered 34.870 cases of illegal logging, which means 96 cases/day (*Greenpeace 2015*)

Audio Intruder Detection System

ICEMES 2017 | On the Optimization of SVM Kernel Parameters for Improving Audio Classification Accuracy

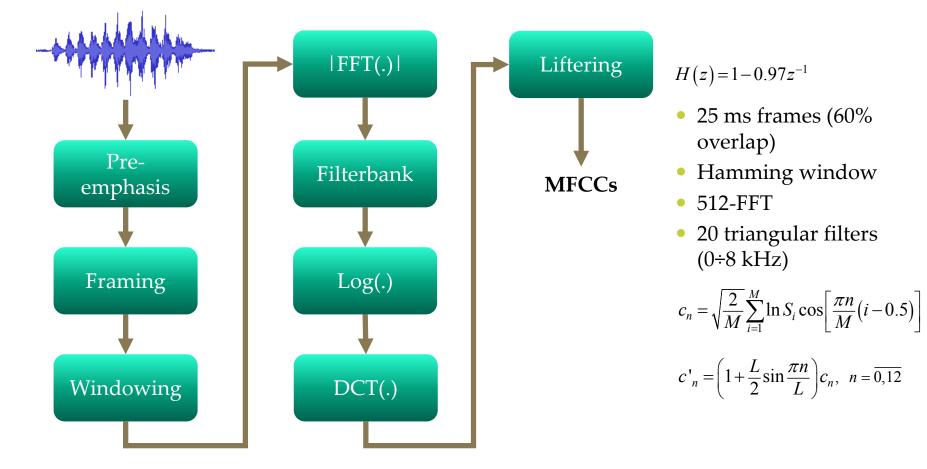
Wildlife Database

Birds dataset – 654 audio files originated from 70 different species of birds (Internet)

Chainsaws dataset – 356 audio files originated from 18 different types of chainsaws (SPG)

Gunshots dataset – 120 audio files originated from 40 different types of guns (Internet)

Human voice dataset – 207 speech sounds originated from 50 different former students from the TUCN


Tractors dataset – 260 audio files originated from 17 different types of tractors (SPG)

• 16 kHz, 16-bit

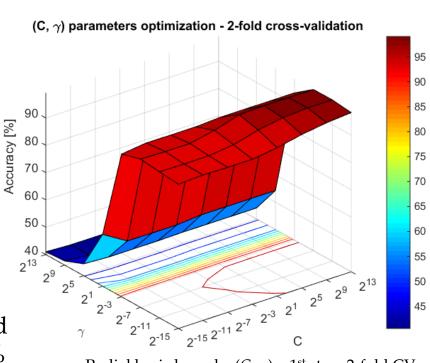
None of the audio signals are studio recordings
 ⇒ they are subject to some additive noise from surroundings

6/21

Mel Frequency Cepstral Coefficients

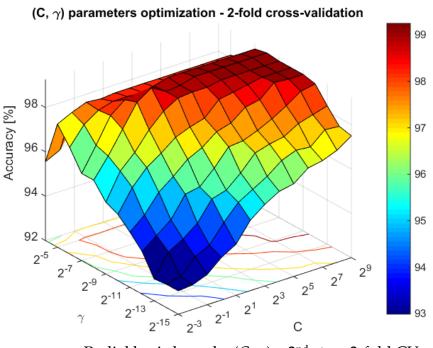
Support Vector Machines

- SVMs are supervised learning methods used for classification, regression or outliers' detection
- SVMs optimization problem involves the minimization of the error function $\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^N \xi_i$, subject to $y_i \left[\mathbf{w}^T\phi(\mathbf{x}_i) + b\right] \ge 1 \xi_i$, $\xi_i \ge 0$, $i = \overline{1, N}$
 - $\mathbf{x}_i \in \Re^p$, *i*=1, 2, ..., *n* are training vectors,
 - $\mathbf{y} \in \{-1,1\}^n$ represent the class labels,
 - **w** is an *n*-dimensional weight vector,
 - *C*>0 is the penalty parameter of the error term (cost/capacity constant),
 - *b* is a scalar (bias value),
 - *φ* is the kernel which maps the training vectors (inputs) into a higher dimensional space (the feature space)
 - ξ_i represents parameters for handling nonseparable inputs

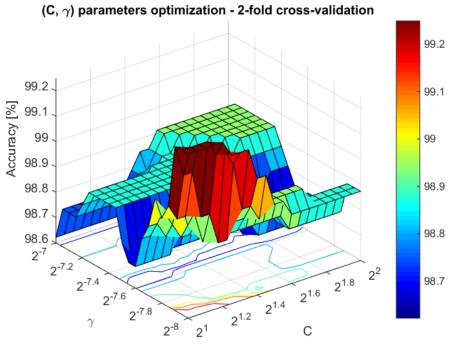

Support Vector Machines

- We denote the kernel function by $K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$
 - Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Radial basis kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2), \ \gamma > 0$
 - Most popular because of its localized and finite responses across the entire real *x*-axis range
 - Sigmoid kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\gamma \mathbf{x}_i^T \mathbf{x}_j + r), \gamma > 0$

- To find the best kernels' parameters, based on the overall accuracy, we use a grid search algorithm, in log2-space
- First a 2-fold CV is employed for parameters selection, then, the best point in the space is taken as center and a 10-fold CV is performed with the adjacent parameters
 - If better parameters are found, they will act as a new center and a 10-fold CV is apply again
 - The process should be repeated again and again, until no better parameters are found, or until the parameters are at the border of the grid


Radial basis kernel

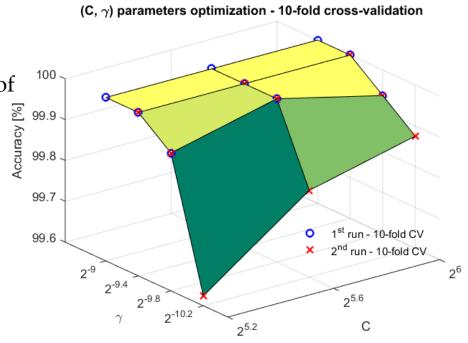
- Two parameters should be optimized
 - The cost parameter *C* jointly with γ
- The initial considered values
 - $C = \gamma = 2^i, i = -15, -11, ..., 13$
 - *C* and *γ* values are uniformly distributed in log2-space
 - A 2-fold CV is used
 - We keep only those values for *C* and *γ*, for which the accuracies are >90%
 - There is no need to retain $\gamma > 2^{-4}$ and $C < 2^{-3}$


Radial basis kernel – (C, γ) – 1st step: 2-fold CV

- We perform another 2-fold CV, using a smaller step-size
 - $C = 2^{i}, i = -3, -2, ..., 9$ and $\gamma = 2^{i}, i = -15, -14, ..., -4$
- If we want to keep only those pairs for an accuracy >98.5%, we should retain
 - for C the values from 2¹ to 2² together with γ between 2⁻⁸ and 2⁻⁷,
 - or C between 2⁴ and 2⁹ together with γ between 2⁻¹¹ and 2⁻⁷

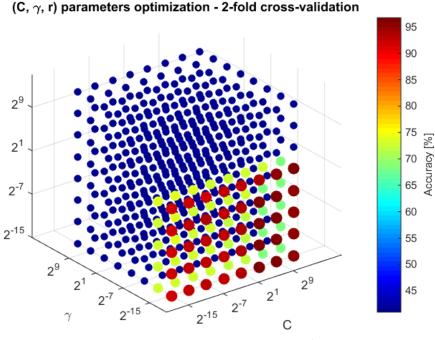
Radial basis kernel – (C, γ) – 2nd step: 2-fold CV

- First case
 - $C = 2^{i}$, i = 0.9, 1, ..., 2.1 and $\gamma = 2^{i}$, i = -8.1, -8, ..., -6.9
 - Now the grid is enough smaller, thus this was the last step
 - There are ten "best pairs" with a 99.25% accuracy
 - $C = 2, \gamma \in \{2^{-8}, 2^{-7.95}, 2^{-7.9}\}$
 - $C = 2^{1.05}, \gamma \in \{2^{-8}, 2^{-7.95}\}$
 - $C = 2^{1.1}, \gamma \in \{2^{-8}, 2^{-7.95}\}$
 - $C = 2^{1.15}, \gamma \in \{2^{-8}, 2^{-7.95}\}$
 - $C = 2^{1.2}, \gamma = 2^{-8}$


Radial basis kernel – (C, γ) – 3rd step: 2-fold CV (case 1)

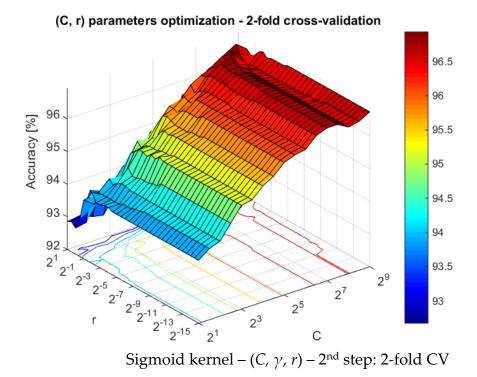
- Second case
 - $C = 2^{i}$, i = 4, 4.4, ..., 9.2 and $\gamma = 2^{i}$, i = -11, -10.6, ..., -7
 - 14x11=154 combinations are tested within the 2-fold CV
 - The highest accuracy attained is 99.19% (for 36 pairs)
 - We consider only the pair $(C, \gamma) = (2^{5.6}, 2^{-9.4})$

(C, γ) parameters optimization - 2-fold cross-validation 99 99 Accuracy [%] 98.8 98.5 98.6 98 98.4 97.5 2-7 98.2 2⁴ 2^{4.8} 2^{5.6} 2^{6.4} 2^{7.2} 2⁸ 2^{8.8} 2-7.8 2^{-8.6} 2^{-9.4} 98 2-11

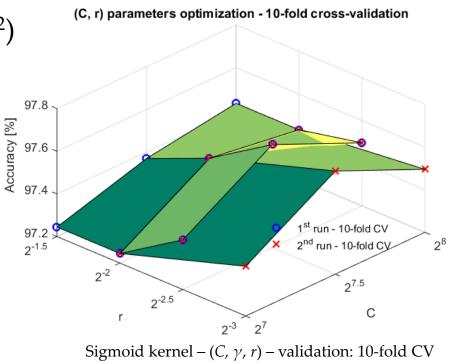

Radial basis kernel – (C, γ) – 3rd step: 2-fold CV (case 2)

- Second case
 - For validation, (C, γ) = (2^{5.6}, 2^{-9.4}) will be the center for the first run of 10-fold CV
 - Its adjacent pairs are (2^{5.2}, 2^{-9.8}), (2^{5.2}, 2^{-9.4}), (2^{5.2}, 2⁻⁹), (2^{5.6}, 2⁻⁹), (2^{5.6}, 2⁻⁹), (2^{6.2}, 2^{-9.8}), (2^{6.2}, 2^{-9.4}), and (2^{6.2}, 2⁻⁹)
 - After this run, the best accuracy was 100% for (2^{5.6}, 2^{-9.8})
 - This will be the center for the second run
 - With an accuracy of 100% the declared winner is $(C, \gamma) = (2^{5.6}, 2^{-9.8})$

Radial basis kernel – (C, γ) – validation: 10-fold CV


- Sigmoid kernel
 - Three parameters should be optimized
 - The cost parameter *C* jointly with *γ*, and *r*
 - The initial considered values
 - $C = \gamma = r = 2^i, i = -15, -11, ..., 13$
 - A 2-fold CV is used
 - For accuracies >95% the only suitable values are $\gamma = 2^{-15}$, r < 2, and C > 2

Sigmoid kernel – (C, γ , r) – 1st step: 2-fold CV


Sigmoid kernel

- We perform another 2-fold CV, using a smaller step-size
 - $C = 2^{i}$, i = 1, 1.5, ..., 9 and $\gamma = 2^{i}$, i = -15, -14.5, ..., 1
 - After the second 2-fold CV the highest accuracy is 96.93% for $(C, r) = (2^{7.5}, 2^{-2})$

Sigmoid kernel

- For validation, (*C*, *r*) = (2^{7.5}, 2⁻²) will be the center of the first run of 10-fold CV
 - After the first run, the highest accuracy is 97.68% for $(C, r) = (2^{7.5}, 2^{-2.5})$
 - This will be the center of the second run
 - There was no improvement in the accuracy, thus the declared trio winner is $(C, \gamma, r) = (2^{7.5}, 2^{-15}, 2^{-2.5})$

• To validate the proposed method for SVMs kernels' parameters optimization we evaluate the average accuracy and the standard deviation (Std.Dev.) over 10 runs of stratified 10-fold CV

Kernel		Accuracy [%] (Std.Dev.)
Linear	Default parameters	97.64 (1.14)
Radial basis	Default parameters	98.98 (0.81)
	$(C, \gamma) = (2^{1.1}, 2^{-8})$	99.46 (0.65)
	$(C, \gamma) = (2^{5.6}, 2^{-9.8})$	99.72 (0.51)
Sigmoid	Default parameters	40.95 (0.32)
	$(C, \gamma, r) = (2^{7.5}, 2^{-15}, 2^{-2.5})$	97.32 (1.20)

 The highest improvement is obtained for the sigmoid kernel (~56%)

Conclusion

- We have presented a step-by-step grid search approach in log2-space to optimize the kernels' parameters for SVMs
- We have shown that the parameters optimization improves the recognition performance for audio classification, especially when using the sigmoid kernel
- We have compared the accuracies obtained with and without kernel's parameters optimization
- As features we have used MFCCs
- For five classes, using 10-fold cross validation, we have obtained average accuracies of 99.74% for radial basis kernel, and 97.18% for sigmoid kernel

On the Optimization of SVM Kernel Parameters for Improving Audio Classification Accuracy

Lăcrimioara GRAMA, Liana TUNS, Corneliu RUSU

Technical University of Cluj-Napoca

Faculty of Electronics, Telecommunications and Information Technology Basis of Electronics Department

Signal Processing Group

14th International Conference on Engineering of Modern Electric Systems 2017

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/ CCCDI–UEFISCDI, project number PNIII-P2-2.1-BG-2016-0378, 54BG/2016, within PNCDI III.