Face Search at Scale

Anil Jain Michigan State University July 10, 2017

Information Content in a Face

Identity: John

Demographics:

Age: ~ 40; gender: male;

ethnicity: white

Attributes:

Hair: Short, Brown

Moustache: Yes

Beard: Yes

Mole: Yes

Scar: Yes

Social cues:

Expression, emotion,...

Outline

- Face Recognition
- Applications
- Challenges
- State of the Art
- Summary

Face Verification

Same Person?

Face Search

Probe

Gallery

Closed-set v. Open-set Search

Forensic Face Search

Law Enforcement

Face Recognition Milestones

Woodrow Bledsoe Automated face recognition (AFR)

1973 Takeo Kanade First AFR thesis

1991 Turk & Pentland Eigenface

1996 Penev & Atick Local Feature Analysis Elastic Bunch

1997 Wiskott et al. **Graph Matching**

2001 Viola & Jones Face detector

П

2006 Ahonen et al. **Local Binary** Pattern (LBP)

2009

Jia et. al. Deep Network Library Caffe

1915 35mm still camera

1991 Kodak Digital camera 1024p

1990s Surveillance camera 480p @ 30fps

2000 Sharp First camera phone 320p

2010 RGB-D camera Microsoft Kinect 480p @ 30 fps Depth accuracy:

~ 2 mm @ 1 m distance

2013-2014 Wearable camera **Google Glass** 720p @30fps

Nov. 2011 Samsung Galaxy Nexus Face Unlock

2015 Google& Intel Smartphone **RGB-D Camera**

2015+ **Body Camera** Used by police officers

Growing Interest in Face Recognition

Technology Drivers

- Security (covert acquisition, IR, thermal,...)
- Prevalence of surveillance cameras
- Mobile phones
- Social media

Technology Enablers

- Processors (2M comparisons/sec/core)
- Deep networks
- Large training sets
- Benchmark datasets of increasing complexity
- Legacy database s

Applications

Surveillance Cameras Everywhere!

6:00 AM, Home

6:15 AM, Fast Food

6:35 AM, ATM

6:45 AM, Gas Station

7:00 AM, Parking Lot

7:10 AM, Airport

7:30 AM, Security

3:00 PM, Hotel

~200 million surveillance cameras; billion of hours of videos/week!

Face Recognition in Video

Widespread looting and rioting

Extensive CCTV Network

Face recognition lead to many arrests

Many suspects could not be identified

2011 London riots

Boston Marathon Bombing

(April 2013)

Tamerlan Tsarnaev

Dzhokhar Tsarnaev

International Border Crossing

SmartGate, Australia & NZ

ePassports from eligible countries

HK-Schenzen border

Fusion of face & fingerprint

Passenger Verification

Matching face image to photo on ID card

De-duplication: Driver License Database

Face-based scrubbing of

13.5M records (~30M photos)
in Michigan DMV database;
photos of different subjects in
the same record!

Courtesy: Pete Langenfeld, Michigan State Police

De-duplication

Gallery: 34 million (30M DMV photos, 4M mugshots) 2009 driver license

Smile Makes a difference!

Top-10 retrievals 6 10

Gallery: 34 million (30M DMV photos, 4M mugshots)

Mobile Phones

More cell phone accounts than world's population; \$1 Trillion in mobile payments

Mobile Face Unlock

Uploaded: Dec 6, 2011 YouTube

Photo Tagging

Social Media

- * *trillion image
 shares per year, and increasing
- Challenges: accuracy and efficiency

Constrained Face Recognition

- Cooperative subjects:
 Small intra-subject
 variations (FERET)
- Operational face data (mugshots, visa images)
 - Limited user cooperation
 - Effect of aging

FERET Images

PCSO Mugshot Images

Unconstrained Face Recognition

LFW

- Images of celebrities and public figures
- Faces detect by Viola-Jones detector

• IJB-A

- –Semi-automatic data collection
- Manually selected identities & annotation

LFW Images

IJB-A Images

State of the Art: Verification

State of the Art: Verification

NIST IJB-B database: TAR @0.01% FAR = 70%

Automated Face Recognition

Most face recognition algorithms follow this pipeline

Face Detection

Number of mobile phone users worldwide in 2016 is estimated to be about 4.8 billion

Learning Face Representation

(a) Input RGB image, (b) detected keypoints, (c) normalized face image, (d) a convolutional neural network, (e) 320-dimensional feature vector and (f) softmax classification layer for training only

Network Training

- ConvNet is trained with CASIA-Webface
 - 494,414 images of 10,575 subjects (training bias?)
- Preprocessing: face and landmark detection
 - Align face images using the centers of eyes & mouth

#subjects = 10,575

Total # images with landmarks = 435,689

Face v. Non-Face

- In 120M faces, we estimate ~2.3% non-faces
- Some "non-faces" are of statues, toys, etc., but some are completely wrong

False-Positive Face Detections

Search Example

- 3 Images of TV Anchor Tammy Leitner, added to 120M background set
- Top-10 retrieval results for one query:

Search for Sherry Jones (120M Gallery)

Search for Dzhokhar Tsarnaev (120M Gallery)

Network Architecture & Training

	Training Set	Network	VR@FAR=0.1%
(1)	CASIA-Webface	From Scratch [50]	84.41%
(2)	CASIA-Webface	From Scratch [50], fusion of 9 models	88.00%
(3)	CASIA-Webface	18-layer ResNet	82.06%
(4)	VGG-CASIA	50-layer ResNet	88.67%
(5)	VGG-CASIA	50-layer ResNet, 10-crop	89.74%
(6)	CASIA-Webface	50-Layer Pre-ResNet	88.36%
(7)	CASIA-Webface	50-Layer Pre-ResNet, 10-crop	89.64%
(8)	VGG-Face	50-Layer Resnet	81.40%
(9)	VGG-Deduplicated	50-Layer Pre-ResNet	86.98%
(10)	VGG-Deduplicated+CASIA-Webface	50-Layer Pre-ResNet	91.04%
(11)	VGG-Deduplicated+CASIA-Webface	50-Layer Pre-ResNet, 10-crop	92.22%
(12)	VGG-Deduplicated+CASIA-Webface	101-Layer Pre-ResNet	91.18%
(13)	VGG-Deduplicated+CASIA-Webface	101-Layer Pre-ResNet, 10-crop	92.10%

LFW Under BLUFR Protocol

IARPA Janus Program

IARPA's Janus program aims to dramatically improve the current performance of face recognition tools by fusing the rich spatial, temporal, and contextual information available from the multiple views captured by today's "media in the wild".

Some Challenges

Pose, Illumination, Expression

Images of one subject in NIST IJB-A data, overlaid with V-J detector & dlib landmarks

Facial Aging and Doppelgangers

Feb 2005

Score=0.26

http://www.theguardian.com/theguardian/2010/dec/05/barack-obama-doppelganger-ilham-anas

Scars, Marks & Tattoos

Detroit police linked at least six armed robberies at an ATM after matching a tipster's description of the suspect's distinctive tattoos

Which Ones Are Real?

Which Ones Are Real?

Face Image Recovery from Templates

Threshold@ FAR = 0.1% is 0.78

Capacity of Face Recognition?

Summary

- Face recognition is now a major topic of research; growing no. of FR systems deployed
- State-of-the-art: High accuracy for constrained & cooperative subjects; low accuracy for unconstrained face recognition of noncooperative subjects
- Need recognition systems robust to pose, illumination & expression, aging, and low resolution video
- User concerns: Data security & privacy

References

- L. Best-Rowden and A. K. Jain, "Automatic Face Image Quality Prediction", arXiv preprint arXiv:1706.09887, 2017
- G. Mai, K. Cao, P.C. Yuen and A.K. Jain, "Face Image Reconstruction from Deep Templates", arXiv preprint arXiv:1703.00832, 2017
- L. Best-Rowden and A.K. Jain, "Longitudinal Study of Automatic Face Recognition", *IEEE Trans. Pattern Analysis & Machine Intelligence*, 2017 DOI:10.1109/TPAMI.2017.2652466
- C. Otto, D. Wang and A. K. Jain, "Clustering Millions of Faces by Identity", IEEE Trans. Pattern Analysis & Machine Intelligence, 2017 https://arxiv.org/abs/1604.00989
- D. Wang, C. Otto and A. K. Jain, "Face Search at Scale", IEEE
 Transactions on Pattern Analysis and Machine Intelligence, DOI 10.1109/TPAMI.2016.2582166, June 2016