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1. Introduction

The theory behind wavelets has been developed gltinm last thirty years independently by
mathematicians, scientists and engineers. Researahe faced with an ever increasing variety of
wavelet bases to choose from. The first purposbethesis was to research the properties of Bispli
wavelets (fractional, generalized, Battle-Lemabmrthogonal) and to study their significant impact
on the early development of the wavelet transfdfarther, the thesis proposes the improvement of
several wavelet analysis techniques by using Bigglinctions family.

From the very beginning of wavelets, it has beageized the strong connection between
wavelets and differential operators. We proposmvestigate how it can be further improved on the
wavelet's behavior as differentiator using the HBrsp wavelet transform. The spectrogram and
scalogram allow the examination of the energy itistion in the time-frequency respectively scale-
frequency plane. Energetic analysis is connectatigéachosen type of wavelet family. We suggest a
comparison among B-spline wavelets energetic resarid the ones acquired by other well known
wavelets. In addition, a multiresolution framewdok analysis of glottal closure instants is projgbse

A privileged area of applications where wavelet e have been found to be relevant is
pattern recognitiorBiometric recognition is adverted to the automatentification of a person based
on some specific vectors, derived from the biolafjicharacteristics. In the present thesis three
biometric systems are implemented (based on dynsigmature, voice and iris).

2. The improvement of the wavelet analysis technies by using
B-spline functions family

Wavelet analysis is a relative new method, mathieadht based on the work of Joseph Fourier.
Many signals contain transitory characteristicsclhare often the most important part and Fourier
analysis could not detect them. In 1946 D. Gabap#atl the Fourier transform to analyse only a small
section of the signal at a time. Gabor's adaptattatled the Short Time Fourier Transform (STFT),
maps a signal into a two-dimensional function ofigiand frequency. STFT has limited precision,
determined by the size of the analysme window. Wavelet analysis represents the next |dgitsp:

a windowing technique with variable-sized regidhsllows the use of long time intervals for precis
low-frequency information and shorter regions fghhfrequency information. While the choice of the
best wavelet is application depend, it seems teelg useful to isolate a number of features thetcdr
great interest to the users. Unlike most other Yedmases, splines have explicit formulae bothnret
and frequency, which explain their significant imapan the theory of the WT. As more and more
wavelet solution are proposed, the selection ofadiqular wavelet should be motivated by the
problem itself. Comparative studies are needed i@ ever.

Polynomial splines with uniform knots were firstromduced by Schoenberg in 1946. Fractional
B-spline functions were proposed in 2000 by T. Blud M. Unser. The primary motivation for
considering fractional B-splines instead of coni@rdl ones was that the enlarged family happens to
be closed under fractional differentiation. Thefamm first order B-spline function is defined as:
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Fractional B-spline Functions
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Figure 1. The Fractional B-spline Functions of 00.1; 0.2; ... ; 1.9; 2 orders

As we mentioned before, one of the primary reasonghe success of B-splines in applications isrthe
derivative-like behaviour. This property generalizes nicely to the fractiarese:
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The fractional derivative of ordgrof an a fractional B-spline is anothe¥ — ) fractional B-spline.

a+l

The key operator in this case is the causal fraatifinite difference oneA”™ 7 - (1—e'iW) .In

our study, we also appeal tgeneralized B-spline functions, proposed by VanMilke. His starting
point was the fractional B-spline family but he addhe shift parameter (. The fractional derivative

of order(a',r') of a (a, T) generalized B-spline is anoth@r—a'.r—r') generalized fractional B-spline.

Fig.2. Generalized fractional B-spling(a = 05,7 =-05,-04,-03,... ; 24,25)

Stationary Wavelet Transform (SWT) is designed t@roome the lack of translation-
invariance of the discrete wavelet transform (DWTHe combination of SWT with optimal wavelet
functions can be regarded as a smoothing and ereliffiation process.

Figure 3 presents the detail coefficients obtaifredh the first level for different wavelet
techniques of a piecewise polynomial signal (a)k Titst two decompositions (b) and (c) are obtained
by using the'dbl’ wavelet function, for SWT respectively DWT methddhe third decomposition
results from WT based on the generalized fracti@iapline function fora =04 andr = 0.2. Signal
singularities are compactly characterized by SWd ay WT used with the fractional B-spline
function. This feature opens up new ways to anatygrgnal using B-spline wavelet bases.

2



10 T
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Figure 3. a. Input signal; b. SWT — first level dedil coefficients,dbl; c. DWT - first level detail
coefficients,dbl; d. WT — first level detail coefficients, generalied B-spline(0.4,0.2);

Energetic analysis of signals -connected to the cten type of wavelet function

The Fourier spectrogram is defined as the squamuhlae of the STFT. If the length of the
window is small, the spectrogram will be well Idzed in time, but it will have poor frequency
resolution and vice versa. WT has become a valuab#ysis tool due to its ability to elucidate
simultaneously both the spectral and the tempafaflmation within the signal. Wavelet spectrogram,
called scalogram, communicates the time frequemcalization property of the wavelet transform.

Figure 4.b. presents the spectrogram resulted émmsidered entry signal: an exponential chirp
with 8 added transients. Figures 4.c and 4.d rhistthe resulted scalograms using dB3 and the
fractional B-spline function of 0.7 order (blueowl energy; red - high energy). The energy distrdout
region of an impulse located t&tt; for the spectrogram is limited on the time scalehe time frame
and it expands uniformly over all frequencies. @a tontrary, for the scalogram the energy is only
represented for certain frequencies and it is aunatd in the vicinity of; on a time scale. Therefore,
the frequency content of the impulses and alsa time localizations is more accurate in the cdse o
scalogram. It clearly offer a better visualizatfonboth the transients and the chirp. We havetcocied
the test waveform so that the frequency increasgsnentially starting with the S0sample. This can be
seen only from the second spectrogram. In the bewnand particularly in the final bi-dimensional
representation, on both scalogram and spectrogoane €rrors could arise due to the “zero padding”
phenomenon. In the case of the fractional B-spliaeelets, these errors are reduced.
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Figure a. Input Signal; b. Spectrogram; c. Scalogna - dB3; d. Scalogram - fractional B-spline

The Estimation of Glottal Closure Instants in Voicel Speech

The glottal source waveform is an important chamastic used in voice analysis, speaker
emotional state identification, speech synthesis e amplitude changes in the speech signal ean b
related with the glottal wave’s phases. The th@saposes to express these amplitude changes in
successive scales and search for local maximaspmmneling to the closed glottis instants (GCI). In
this purpose a multiresolution analysis is perfatnigeyond the analysis of different signals, ughng
Daubechies, Shannon and fractional B-spline waseletther observations could be made: In the case
of using fractional B-splines there are severalrgndevels of different intensities which are
distributed on several octaves. Many details reaccab us, and even more information was made
available besides that provided by the other wavelections.

We present some results obtained by applying tifmal B-spline wavelet filter bank and by
applying Frobenius norm. Figure 5.b. representdthectave of the wavelet decomposition computed
by using the fractional B-spline wavelet of 0.4 @rdrigure 5.c. represents the Frobenius measure fo
GCI detection. The input signal is also mixed wéthwhite noise - SNR=10dB (Figure 6.a) and is
analyzed by using the same methods. Determinafitmednstants of glottal closure from speech wave
using wavelet transform is equivalent to findingaticular local modulus maxima pattern across
several scales in the time-scale plane. When degettte GCI, the octave band decomposition showed
superior performance in comparison with the covenxéamethods. It can be seen that the Frobenius
measure fails completely in noisy conditions arartiultiresolution detector remains stable.
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Figure 5. a. Voice signal; b. WT, # octave, B-  Figure 6. a. Voice signal + white noise; b. WT,
spline 0.4; c. The Frobenius norm. 4™ octave, B-spline 0.4; c. The Frobenius norm.



3. Biometric Systems

The thesis proposes different biometric systemsdas dynamic signature, voice and iris. For
the experiments some classifiers (kNN, Naive Baged SVM) provided by the WEKA (Waikato
Environment for Knowledge Analysis) environment araployed. In the feature extraction process
different wavelet techniques are adapted and coadbivith the modified TESPAR DZ coding method.

The idea behind the TESPAR (Time Encoded Signatdéasing and Recognition) method is
the employment of an approximation model basedhenzeros theory. The waveform is divided in
periods determined by successive passes through afethe signal, thus maintaining the time
information combined with a simple approximationtbé waveform between two successive passes
through zero. The thesis employs a version ofrtlethod based on TESPAR DZ matrices. In this case
three descriptors are used to describe every epocfduration), S Ghapg and A @mplitudg.
Applying TESPAR DZ procedure, pairs of epochs amagared; a symbol is produced indicating the
differences between the individual D, S and A fezgwof the two epochs being compared.

Biometric System Based on Dynamic Signature and Sgeeh

Signing is part of everyday life and is perceivadaanon-invasive process by the majority of
the users. On-line or dynamic signatures are aeduity a graphic tablet. The voice is usually
employed by persons to recognize each other ddneglialog carried from long distance. Speech as
biometric verifier has some important advantaghs: low price for the sensors (microphone), the
noninvasive way of acquisition and the ability tmyide real time processing. Speech and dynamic
signature signals present more similarities whitdwaprocessing them by similar techniques

A public available handwritten on-line signaturgadese (Task2-SVC2004)as employed in
this research. The corpus consists of 40 sets 4@tkignatures for each user (20 genuine signatures
and 20 skilled forgeries). We also built our owmrbetric bimodal databag@imDB10) involving
speech and signature traitesm 10 individuals, women and men (7 Romanian &faench). For each
user 100 signatures/utterances have been registenedg 5 different sessions.

Feature Set Extraction for Dynamic Signature —~The Stationary Wavelet Transform (SWT) and WT
based on fractional B-splines is performed on thkected time functions of the signaturé:
coordinate Y-coordinateand Pressure We extract the approximation coefficients of fist level of
decomposition (cAl) in order to de-noise the sigraald the details coefficients of the first threxels
(cD1, cD2, cD3). A zero crossing in the detail doeEnts usually corresponds to a peak or valley in
the input signalln the case of approximation signals, each epodahasacterized by its duration D,
amplitude A and shape S, while in the case of Ogigmals each epoch is characterized by its durati

D and amplitude A. Comparisons between conseca@parhs were made in the present study. For
each individual epoch pair, a two-stage vectortemd of a three-stage one, as in the classicaladeth
iIs generated for each descriptor in signature argmlyConsequently, the dimensionality for each
aproximation coefficients set is reduced to 8 amddach details set it is reduced to 4 due to the
modified TESPAR DZ technique. In addition, 4 waveknergy coefficients were used (one
coresponding to the approximation and 3 for détailfius, a vector of a prefixed dimension was
obtained for every signature — Sggnissued features are independent of the size amdidocof the
signatures. This independence was achieved byatixigathem with translation and rotation invariant
technigues based on wavelet and TESPAR combination.

Feature Set Extraction for Speech —By applying the TESPAR DZ coding procedure 27 dogfhts

are obtained from each password signal. Other,sgeech signals are decomposed by using the
Perceptual Wavelet Packet Transform. Such a PWREsgned to match the psychoacoustic model.
The sampling rate is 16 kHz, yielding a speech hadith of 8 kHz. Within this bandwidth, there are
approximately 24 critical bands as shown in FigdreFor each sub bandhe mean energy is
calculated. Additional features resulted from thmet analyses are also usedlative mean square
energy, number of maxima in the mean energy eneelogan pitch frequency and normalized zero
crossings rate. A fixed length vector is obtain@ddach utterance — Voige
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Experiment Set 1- Signature I dentification Task

We carried out identification experiments, usingsifhatures per person (20x40 instances for
SVC2004 database respectively 20x10 for BimDB1@ $VM classification performances are tested
for all available kernels (linear, polynomial, RBiRd sigmoid). Researchers are faced with an ever
increasing variety of wavelets to choose from ane thoice of the best wavelet is application-
dependent. We select several well known wavelettians such as dB1, dB3, lem1, lem2, biorl.3,
bior2.4, rbiol.3, rbio2.4 and coifl. Additionallyhe behaviour of fractional B-spline wavelets % O,
0.2, 0.4, 0.7, 1) and generalized B-spline wavdlets 0, 0.2, 0.4, 0.7, 1 and= 0.2) was investigated.
The purpose was to obtain a robust model and tat figether for the verification task. Lem1, togeth
with the RBF kernel@=100 andy = 00J, is indicated by our results (93.26% classifizatrate) and

will be use for further experiments. Good perforecesare also obtained for Db1l, fractional B-splines
(a - 0) followed by biorl.3. The common aspect of thesecfion is that they act like first order
derivative. In fact, applying SWT on the X-coordimaand Y-coordinate, respectively, we get the
velocity (VX, Vy) as first level details, and thecaleration (Ax, Ay) as second level details. WEdxh

on these functions can be regarded as a smoothoh@ differentiation process, yielding a robust and
performant system. Compared to the conventionahous, there are some advantages in using SWT
for derivative calculation, e.g. simplicity in algihm and improvement in SNR.

Classification rates obtained for different
wavelet functions

O Linear

93 B Polynomial
O RBF

O Sigmoid

83 L
db1l db3 lem1 lem2 biorl.3 bior2.4 rbiol.3 rbio2.4 coifl

Figure 8. Identification experiments, SVC2004 datahse

Experiment Set 2 - Signature Verification Task

The use of skilled forgeries is very important tehavioural biometrics such as signature.
Verification is the decision about whether the atgine is genuine or forgery. Each set contains 20
genuine signatures/ signer and 20 skilled forgez@tected from other 5 signers. The technique was
based SVM classifier, RBF kernel, lem1 wavelet fiorxc The average accuracy was 93.12%.

Experiment Set 3- - Speaker | dentification Experiments

Our experiments reveal that the accuracy ratdsarcase of speech are not very sensitive to the
wavelet functions type. Hence, lem1 will be usedraer to preserve the connection with the sigmatur
based system. In this case a classification ra@d@4% was obtained, for the SVM classifier, RBF
kernel (C=100y = 00}, BiDB10_Speech subcorpus, 10x100 signatures.
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Experiment Set 4 - Feature Vector Selection and Fusion Experiments

The proposed bimodal system employes the evideresepted by two biometric sources (on-
line signature and speech). 5% of the data was fasedhining (50 signatures/utterances) and tts¢ re
of 95% for testing (950 signatures/utterances). fEla¢ure selection was made on the test set bygusin
the ChiSquaredAttributeEval method. From the uniatosystems based on BimDB10_Sign and
BimDB10_Voice subcorpus, we retained different undiial feature vectors and we combined them

by using two fusion methods: at the feature lewel at the score level.

SVM

Feature Kernel Linear | Polynomial RBF | Sigmoid

Vector
Sign64 93,26% 93,15% 93,26% 93,15%
Sign35 94,52% 94,21% 94,84% 94,21%
Sign20 92,31% 89,15% 91,78% 89,15%
\Voice55 94,21% 92,31% 94,84% 92,31%
\Voice20 94,31% 87,57% 90,84% 87,57%
Voicel5 94,31% 87,05% 86,63% 87,05%
Sign35+Voice20 99,89% 99,78% 99,89% 99,89%
Sign20+Voicels 99,36% 99,68% 99,36% 99,68%

Table 1. Identification experiments, BimDB10 databae

Voice and signature data present complementarynrdbon. When these two modalities are
fused, the performance and the robustness of th@diric system are improved. For a small size
vector (SigagtVoicers) a very good accuracy was obtained, above 99%hemase of Signature based
system the subset extracted from x and y coordiisataore relevant than the one extracted from
pressure. Since pressure is invisible, it is diftitco forge. In the case of voice based systen§HAR
DZ coding procedure seems to offer very good parkioperties.

The performances of the proposed system allow usdotion that the feature extraction and
selection steps satisfy the next crucial requirgsiantraclass variance is small (meaning thatufiesest
derived from different samples of the same classchise) and interclass separation is large (featur
derived from samples of different classes diffgngicantly).

For verification task, the results obtained frore tieduced feature vectors (Sign20, Voicel5
and Sign20+Voicel5) are reported. For each usam &0 instances used for learning, 5 were genuine
and the rest (9x5) were considered forgeries. €htny dataset consisted of 45 original instanoes a
9x45 forgeries. The performances of these expetisnare expressed in the terms of FRR (false
rejection rate), FAR (false acceptance rate) an€€ RReceiver Operating Characteristic). Best results
were obtained for the bimodal system, feature vdasion: both FAR and FRR were under 4%.

Biometric System FAR FRR Verification
Rates
Voice 11,05% 12,10% 88,42%
Signature 9,78% 8,10% 91,05%
Bimodal System (feature fusion) 3,26% 3,89% 96,42%
Bimodal System (score fusion) 3,36% 4,42% 96,10%

Table 2. Verification experiments, SVM classifier

Biometric system based on iris

Iris recognition is relatively young method, exigtiin patent only since1994. The employed
database is a public one and contains 3 x 128nages provided from 64 persons (left and righfeye
The first stage of iris recognition is to isolateetactual iris region in a digital eye image. Thg i
region is approximated by two circles, one for it&'sclera boundary and another, for the iris/pupi
boundary. The circular Hough transform was emplagededuce the radius and centre coordinates of
the pupil and iris regions. The detected iris rag®unwrapped by remapping each point to a pair of
polar coordinates using the cartesian to polarsttam suggested by Daugman. In this way, we obtain
a rectangular representation for the iris, usefuhaike things easier for the further processing.
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c
Figure 9. a. Test image having the iris and the pulpdetected; b. Cropped iris ROI; ¢c. Unwrapped iris

For iris feature set extraction DWT 2d was appledhe unwrapped iris image, by using one
level decomposition. The matrix corresponding te #pproximations (cA) and details (cH, cV, cD)
were represented as vectors (cCAld, cH1d, cV1d &idlc The resulted waveforms could be divided
in epochs whose length, amplitude and shape chargretime. Consequently the TESPAR DZ coding
method could be applied. From the TESPAR DZ histogof different iris images provided from
different user could be seen that 9 from 27 symbwaise never detected (the amplitudes of two
consecutive epochs are never the same). Thisisituais eliminated and thus the dimension of the
feature vector is 4x18 for each iris. Further, tbsults obtained for identification experimentsegrms
of accuracy are presented. For training were useaages and for testing 4 images/ user. The SVM
classifier, polynomial kernel0=200d=7), together with B-spline functions seem to keltlst suited.

100 Classification Rates Iris

O Linear
98 | Poly
06 | O RBF

dbl leml  biorl.3 bior2.4 rbiol.3 frac0.4 frac0.7 coifl shan

Figure 10. Iris Identification Rates (SVM)

For verification two classes were considered: chasgth iris images derived from user A and
class nonA with iris images derived from other gsé&or training were used 2 images class A and 10
images class nonA and for testing 4 images classsfectively 20 images class nonA. Verification
experiments were made for 15 users from 64, SVMsdi@r, polynomial kernel, fractional B-spline
wavelet (@ = 0.7). The accuracy was above 93% for all users. Wetiorerithat the idea of using
TESPAR DZ method on images is original and werenmerition by other researchers.

Author’s Contributions

The major contributions brought by this PhD theses
. The study of the B-splines significant impact oa #garly development of the wavelet transform
The implementation of the fractional B-spline wastdllterbanks
Searching the connection between energetic anabysisthe chosen type of wavelet family
The Estimation of Glottal Closure Instants in vaiepeech
The implementation of three biometric systems basesignature, speech and iris
The construction of the BimBD10 database.
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