

Advanced Video Processing for Future Multimedia Communication Systems

André Kaup

Chair of Multimedia Communications and Signal Processing Friedrich-Alexander University Erlangen-Nürnberg

Future Multimedia Communication Systems

Trend in video to make communication more immersive by

- higher image resolution and quality
- stereo and multi-view systems

Data rate of uncompressed UHD video: 3840 x 2160 x 24 bit/pel x 30 frames/s = 6 Gbit/s or 746 MB/s

One CD every second

One DVD every 6 seconds

One Blu-ray disc every 36 seconds

Conclusion: compression is necessary and higher resolutions are more challenging with respect to efficiency and picture quality

Intraframe Prediction

Assumption:

images have (locally) high spatial correlation

- Intraframe prediction uses already decoded image blocks in causal neighborhood
- Best prediction mode according to optimization constraint is transmitted as side information

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Interframe Prediction

Assumption:

video has (locally) high temporal correlation

- Interframe predicion using motion compensated reference
- Multiple reference images for long term prediction
- Motion vector is transmitted as side information

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Overview

- Advancing compression efficiency
 - Spatiotemporal prediction
 - In-loop video denoising
 - Measurement and prediction of energy consumption
- Improving displaying quality
 - Scalable lossless compression
 - Multi-view video using super-resolution
 - Random sampling and reconstruction
- Conclusions and outlook

Spatiotemporal Prediction

State-of-the-art:

switching between interframe und intraframe prediction modes

- Decision taken using rate-distortion optimization
- Extended approach: joint spatiotemporal prediction as additional mode

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Non-Local Means Refined Prediction

Processing area $\mathcal{L} = \mathcal{B} \cup \mathcal{R}$ is regarded for prediction

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Non-Local Means Refined Prediction

Task: Recover original signal s[m, n] from given signal samples $\tilde{s}[m, n]$ in area $\mathcal{L} = \mathcal{B} \cup \mathcal{R}$

Non-local means: Estimate refined samples $\hat{s}[m,n]$ in \mathcal{B} using weighted non-local average filter

$$\hat{s}[m,n] = \frac{\sum_{(k,l)\in\mathcal{L}} \tilde{s}[k,l] w_{(m,n)}[k,l]}{\sum_{(k,l)\in\mathcal{L}} w_{(m,n)}[k,l]}$$

Example for weight calculation:

- Samples with similar neighborhood get a large weight
- Samples with dissimilar neighborhood get a small weight

Test Sequences

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

[Seiler, Richter, Kaup, PCS 2010]

Kaup: Video Signal Processing for Future Communication Systems

July 8, 2015 Page 15

Chair of Multimedia Communications and Signal Processing

Motion compensated prediction

Non-local means refined prediction

QP34: 33.54 dB @ 447 kbit/s

QP34: 34.25 dB @ 434 kbit/s

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Motion compensated prediction

Non-local means refined prediction

QP34: 33.54 dB @ 447 kbit/s

QP34: 34.25 dB @ 434 kbit/s

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Overview

- Advancing compression efficiency
 - Spatiotemporal prediction
 - In-loop video denoising
 - Measurement and prediction of energy consumption
- Improving displaying quality
 - Scalable lossless compression
 - Multi-view video using super-resolution
 - Random sampling and reconstruction
- Conclusions and outlook

Prediction Error Signal

Problem

- Prediction error signal has more noise than the current frame itself

Solution

- Remove noise from the predictor

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Inter-Frame Encoder with In-Loop Denoising

 Simplified block diagram of an inter-frame encoder with in-loop denoising

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Inter-Frame Decoder with In-Loop Denoising

 Simplified block diagram of an inter-frame decoder with in-loop denoising

Denoising is performed after displaying the decoded frames

- Noise filtering works on transformed and quantized reference signal
- Analytical model for Gaussian noise and perfect prediction

$$\xrightarrow{n[k]} \mathsf{T} \xrightarrow{\alpha[\mu]} \mathsf{Q} \xrightarrow{\alpha_q[\mu]} \mathsf{T}^{-1} \xrightarrow{n_q[k]} \mathsf{P}$$

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Simulation Conditions

- HEVC reference software HM-2.2
 - Coding of 100 frames
 - QP 2 {12 ... 37}
 - Coding configurations: Idlc_P, Idhe_P, Idlc, Idhe
- SVT test sequences from ftp://vqeg.its.bldrdoc.gov/
 - Resolution of 3840x2160 pixels with 50 frames per second
 - Using a centrically cropped version of 2560x2160 pixels
- Denoising parameters
 - AWF: window of 3x3 pixels
 - $-\Delta_L=1, \Delta_H=3$

Simulation Results for ParkJoy (Idlc)

• Estimated noise of the input sequence $\sigma_n \approx 1.8$

Kaup: Video Signal Processing for Future Communication Systems

July 8, 2015 Page 27

Chair of Multimedia Communications and Signal Processing

Overview

- Advancing compression efficiency
 - Spatiotemporal prediction
 - In-loop video denoising
 - Measurement and prediction of energy consumption
- Improving displaying quality
 - Scalable lossless compression
 - Multi-view video using super-resolution
 - Random sampling and reconstruction
- Conclusions and outlook

Battery constraint:

- Operating time of portable devices is limited by battery capacity
- Especially critical for HD and UHD content

Goal: Extend operating times by reducing the required decoding energy

Decoding energy estimated through processing time:

Decoding energy estimated through processor events:

$$\hat{E}_{\text{dec}} = \sum_{i=0}^{M} f(x_i)$$

- Number of instruction fetches
- *M*=3 events considered:
- Level 1 data cache misses
- Hardware interrupts

Modeling the Decoding Energy – Cont'd

Decoding energy estimated through high-level features:

$$\hat{E}_{dec} = W \cdot H \cdot N \cdot \left(\alpha + \beta \cdot \frac{B}{W \cdot H \cdot N}^{\gamma}\right)$$

W: Frame width (pixels)

- *H*: Frame height (pixels)
- N: Number of frames
- *B*: Bit stream file size

 α, β, γ : System specific variables

[Herglotz, Kaup, EUSIPCO 2015]

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Modeling the Decoding Energy – Cont'd

Decoding energy estimated through bit stream features:

$$\hat{E}_{\text{dec}} = \sum_{\forall i} n_i \cdot e_i$$

[Herglotz, Kaup, ICIP 2014]

- *i*: Feature index (up to 90)
- *n_i*: Number of occurrences
- e_i : Feature specific energy
- Examples:

10000101011110011001101000011111

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Estimation Accuracies

- Test set: 120 sequences, 16-40 frames, QP=10,32,45
- Encoder configurations: intra, low delay (P), random access,
- **Software:** HM-13.0, libde165, FFmpeg
- Hardware: Pandaboard, Beagleboard, FPGA

Estimation error:

$$\varepsilon = \frac{\hat{E}_{\rm dec} - E_{\rm dec}}{E_{\rm dec}}$$

Mean absolute estimation errors:

Model	Γω
Decoding time	3.20%
Processor events	3.24%
High-level features	9.36%
Bit stream features (90)	3.30%
Bit stream features (27)	5.46%

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Overview

- Advancing compression efficiency
 - Spatiotemporal prediction
 - In-loop video denoising
 - Measurement and prediction of energy consumption
- Improving displaying quality
 - Scalable lossless compression
 - Multi-view video using super-resolution
 - Random sampling and reconstruction
- Conclusions and outlook

Motivation

- New video coding standard HEVC primarily targeting consumer applications with lossy compression
- Need for lossless compression in professional applications
 - Medical imaging (telemedicine)
 - Archiving (cinema)

- High bitrate ⇔ limited channel capacity
- Scalable lossless coding using two layers
 - Lossy base layer (BL)
 - Lossless enhancement layer (EL)

en.wikipedia.org/wiki/File:RupturedAAA.png

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

System Overview

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Base Layer

⇒ Lossy BL compression using HEVC

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Enhancement Layer

 Lossless EL coding using the proposed
Sample-based Weighted Prediction for Enhancement Layer Coding (SELC)

Enhancement Layer Coding

Intra prediction:

- Non-linear sample-based weighted prediction (SWP)
- Implemented using fast lockup tables

Entropy coding/decoding:

Modified context-adaptive binary arithmetic coding (CABAC)

[Wige, Kaup, ICIP 2013]

Intra Prediction (SWP) I

⇒ Four-pixel neighborhood and four-pixel patch

Patch pixel

⇒ Patch around the current pixel is compared to the patches of the neighborhood pixels ...

[3] P. Amon et al., "RCE2: Sample-based weighted intra prediction for lossless coding," document JCTVC-M0052, JCT-VC, Apr. 2013.

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Coding efficiency:

Relative bitrate differences¹ for EL coding compared to SHM-2.1

HM-11.0					SE	LC	
QP22	QP27	QP32	QP37	QP22	QP27	QP32	QP37
1.2%	1.0%	0.3%	0.8%	-2.6%	-4.7%	-6.5%	-7.3%

Runtime:

Relative runtime increase² for EL processing compared to BL processing only

	SHM-2.1			HM-11.0			SELC					
	QP22	QP27	QP32	QP37	QP22	QP27	QP32	QP37	QP22	QP27	QP32	QP37
Enc	25.3%	30.6%	34.9%	37.7%	18.5%	22.5%	25.5%	27.7%	0.6%	0.7%	0.9%	0.8%
Dec	244.4%	338.9%	443.6%	536.2%	260.1%	361.9%	451.4%	533.8%	202.8%	279.6%	334.3%	374.8%

1: average values w/o ElFuente

²: average values for all sequences

Kaup: Video Signal Processing for Future Communication Systems

Chair of Multimedia Communications and Signal Processing

Overview

- Advancing compression efficiency
 - Spatiotemporal prediction
 - In-loop video denoising
 - Measurement and prediction of energy consumption
- Improving displaying quality
 - Scalable lossless compression
 - Multi-view video using super-resolution
 - Random sampling and reconstruction
- Conclusions and outlook

- Super-Resolution (SR) is a key issue in image and video processing domain
- Goal: create reasonable high-frequency content for a low-resolution image or video sequence

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Motivation

Mixed-resolution multi-view video plus depth format (MR-MVD)

 Goal: Usage of neighboring high-frequency content to refine lowresolution destination view

Super-Resolution Based on High-Frequency Synthesis

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT Chair of Multimedia Communications and Signal Processing

Super-Resolution Based on High-Frequency Synthesis

Impact of additional depth inaccuracies on visual SR quality:

original translation scale zoom

- Different depth distortion scenarios have different impact on SR quality
- **Goal:** Create an algorithm that is robust to each of those distortions

Displacement-Compensated Super-Resolution

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Translation:

• Shifting all depth entries 5 pixel positions to the top right.

Scaling:

• Limiting the 8 bit depth entries [0; 255] to [0; 127].

Zoom:

• Dropping 10% of rows and columns and resizing the cropped depth map via nearest neighbor interpolation.

		Ballet	Breakdancers	Cones	Teddy	Avg. gain
	$l_l(u,v)$	36.97	38.82	33.10	33.71	
Original	$\hat{l}(u,v)$	36.68	37.38	34.63	35.09	
depth	$\hat{l}_{dc}(u,v)$	38.01	37.95	34.71	35.43	0.58
Translated depth	$\hat{l}(u,v)$	35.98	37.47	34.18	34.82	
	$\hat{l}_{dc}(u,v)$	38.11	38.04	34.61	35.48	0.95
Scaled depth	$\hat{l}(u,v)$	34.77	36.11	30.35	31.04	
	$\hat{l}_{dc}(u,v)$	37.83	38.01	34.24	35.06	3.22
Zoomed depth	$\hat{l}(u,v)$	34.16	36.86	32.23	33.16	
	$\hat{l}_{dc}(u,v)$	37.80	37.86	34.09	35.07	2.10

Kaup: Video Signal Processing for Future Communication Systems

Chair of Multimedia Communications and Signal Processing

Visual comparison: ballet

 $\hat{l}(u,v)$ $l_l(u,v)$ low-resolution SR with original depth map SR with translated depth map SR with scaled depth map SR with zoomed depth map 31.54 dB 31.82 dB 32.90 dB 28.37 dB 29.62 dB dc SR with zoomed depth map original dc SR with original depth map dc SR with translated depth map dc SR with scaled depth map 32.93 dB 33.00 dB 32.67 dB 33.04 dB Λ l(u,v) $\overline{l}_{dc}(u,v)$

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Overview

- Advancing compression efficiency
 - Spatiotemporal prediction
 - In-loop video denoising
 - Measurement and prediction of energy consumption
- Improving displaying quality
 - Scalable lossless compression
 - Multi-view video using super-resolution
 - Random sampling and reconstruction
- Conclusions and outlook

Example: ¹/₄ Sampling

[Schöberl, Seiler, Kaup, ICIP 2011]

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Aliasing

⇒ Regular versus non-regular sub-sampling

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Frequency Selective Extrapolation

Sparse signal model generation as a weighted superposition of Fourier basis functions

$$g[m,n] = \sum_{(k,l)\in\mathcal{K}} \hat{c}_{(k,l)}\varphi_{(k,l)}[m,n]$$

[Seiler, Kaup, SPL 2010]

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Frequency Selective Extrapolation

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Reconstruction by Frequency Selective Extrapolation

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Comparison

Low resolution image

Reconstructed image

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

Reconstruction algorithm	PSNR [dB] (KODAK)	PSNR [dB] (TECNICK)
Frequency Selective Extrapolation	28.80	31.50
Linear Interpolation	27.31	29.81
Steering Kernel Regression	27.55	30.30

[M. Jonscher, J. Seiler, T. Richter, M. Bätz, A. Kaup, ICIP 2014]

Future video communication systems will require more efficient compression and be more immersive

Efficient compression

- Video is a cube:
- Noise might be significant:
- Energy will play a role:

Improved immersiveness

- Picture quality matters:
- 3D is on the way:
- Sampling revisited:

- Spatiotemporal prediction
- ► In-loop denoising
- Decoding energy measurement

- Scalable lossless coding
- Super-resolution for multi-view
- Random pixel reconstruction

About the Future

Copyright © Randy Glasbergen. www.glasbergen.com

"IT MAKES NO SENSE TO WORRY ABOUT THE FUTURE. BY THE TIME YOU GET THERE, IT'S THE PAST!"

Kaup: Video Signal Processing for Future Communication Systems Chair of Multimedia Communications and Signal Processing

