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Wireless Sensor Networks

@ Comprise large number of geographically distributed sensor nodes
@ Nodes have sensing, computation and communication capabilities
@ A Myriad of Applications

Battlefield surveillance

Industrial process control

L+
e Environment and habitat monitoring
9
e Target localization and tracking

@ Design Challenges

e Limited hardware e.g., power, computational resources
e Limited bandwidth

e Low complexity, energy efficient inference algorithms

e Scalability



Clock Synchronization

@ Objective:
To establish a common notion of time across the network.

@ Why?
e Efficient duty cycling
e Optimal data fusion
@ Node localization and target tracking

@ Channel access schemes e.g., TDMA



Clock Model and Impairments

@ Offset-only clock model Cx (¢) a > 1
Cx(t)=t+ 3 a <1
@ Offset and skew clock model " Tdeal
Cx(t) = at + 3 *3
t: actual time, «:. Skew, 3. Clock offset : "t

@ Messages exchanged between nodes are contaminated by
e A fixed propagation delay d

e Variable network delays
e Accurate modeling of the network delays is a topic of interest

e Some of the candidate distributions include Gaussian, exponential,
log-normal and Weibull (Bovy, 02).



Introduction

Fundamental Approaches to Clock
Synchronization

@ Receiver-receiver synchronization

@ Nodes receiving timing information from a
reference node synchronize by
exchanging their time stamps.

@ One way message exchange

@ Reference node broadcasts its current
time to other nodes in the network.

@ Two way message exchange .

@ Two nodes exchange their timing
iInformation with each other for
synchronization




Pairwise Synchronization

@ Node S sends its current time through time
stamp T'}.

@ Node R records the reception time 77
according to its own time scale.

@ Node R replies with time stamps 77 and T}
which is received at time T;‘ by node S with
respect to its own clock.

U, 2T? - T} =d + 8+ X;
V, ST} —T? =d—B+Y, (1)

where d represents propagation delay, 3 is the clock offset and X,; and Y, are
the random delays.
N

Our primary goal is to estimate 5 using time stamps {U;, V; };_;.



Related Work

@ Analysis of the sender receiver model. Several estimators of clock offset
were proposed (Ghaffar, 2002)

@ ML estimation of fixed delay 4 and clock offset 7 in a two way message
exchange by graphical maximization (Jeske, 2005)

@ Prior contributions obtain ML estimate of the clock parameters
graphically.
Need a simpler analytical framework.

@ Most studies assume a fixed clock offset.
Imperfect oscillators render a time-varying nature to the clock offset.

@ Low-cost sensor nodes cannot afford complex iterative updates.
Low complexity algorithms with exact inference.



Main Contributions

@ A simpler alternative proof of the ML estimator proposed in (Jeske,
2005).
Tool: Convex Optimization

@ A unified ML estimation approach for Gaussian, log-normal or
exponentially distributed likelihood functions
Tool: Convex Optimization

@ Recasting clock offset estimation in Bayesian regime to cater for time
variations
Tool: Factor Graphs

@ An exact solution for time-varying clock offset estimation problem for
Gaussian, log-normal or exponentially distributed likelihood functions
Tool: Max-product message passing



Pairwise Synchronization

Recasting in Convex Optimization Framework

@ The problem of ML estimation can be recast as an instance of convex
optimization.

7 2 — 10 . .9
(d.3) =min > _(U; +V; — 2d)

Using KKT conditions, the ML estimates of d and 3 are given by

Bar — 20—V 5 Yo+ VY
2 * 2

Simpler alternative bypassing the graphical analysis

A. Ahmad, A. Noor, E. Serpedin, H. Nounou and M. Nounou, *On Clock Offset Estimation in Wireless Sensor Networks with
Weibull Distributed Network Delays®, International Conference on Pattern Recognition (1CPR), Istanbul, Turkey, August 2010.



A Parameterized Approach

@ Aim is to provide an analytical parameterized solution for different
distributions

@ A general approach is used by considering the exponential family
notation

@ Define
E=d+ 35, v=d-—p (2)

@ Two types of likelihood functions: unconstrained and constrained
Unconsirained Likelihood:
f(Uk|E) ox exp (Ene(Uk) — d¢(&))
F(Vi|Y) o< exp (ny (Vi) — &y (W)

Constrained Likelihood:

F(ULIE) o exp (£ne(Ur) — ¢ (€)) T (Ur — €)
F(Vi|) o< exp (vny (Vi) — do () T (Vie — o)




A Unified ML Estimation Approach

@ Unconstrained Likelihood:

The ML estimates of £ and > can be expressed as

N N
Zj:l '-'?»E{Uj) %E} . Ej:l '-'?E{I’})
. MIL —
ND’%E Nﬂ'f?_#

&ML —

@ Constrained Likelihood:

The ML estimates of £ and > can be expressed as

- . (25l me(U;) - (i (V)
EMLZIHlﬂ( jiﬁ}gg ’ :U{l} . Uy = min = > . }1’11)

A unified analytical ML approach estimation for Gaussian, log-normal and
exponentially distributed likelihood functions



A Bayesian Viewpoint

@ The imperfections introduced by environmental conditions in the quartz
oscillator results in a time-varying clock offset between nodes.

@ The parameters £ and > are assumed to evolve through a
Gauss-Markov process given by

& = &1 +wp, Yp=tYp_1+vg, Tfork=1,..., N

The posterior pdf can be expressed as

N N
f& U, V) o f(E,4)F(U,VI[E ) =f(&) || F(&l&—1)f (o) || f(¥rltor—1)
E=1 E=1

N
T £O1€0) £ (Vi) (3)
k=1

where uniform priors f(&p) and f(vp) are assumed. Define
5F_4 = f(&kl&k—1) ~ N(Ek—1,0%), vE_, = f(r|tve—1) ~ N (r—1,0%),
fr 2 f(UR|&R), hr 2 F(Vi|r)



Factor Graphs and Max-Product Message Passing

@ A factor graph represents a factorization of a global function as a product
of local functions called factors.

@ An edge connects a variable to a factor node only if it is an argument of
the local function factor expressed by the factor node.

factor node to variable:

variable to factor node:

ma— f (2) = mi; = () m Tr) = max : Mg a;
Lse?gnf fs= () \{x} (f'i} 11 a;—f ( 1})

aien( f)\{=z}
™y
m, __(x) Moz (ﬂl )
) m__ . (x) —
Y X—» P
- f . Set of
neighbors of X -— . neighbors of
other than f m,_ (%) P other than X

A. Ahmad, E. Serpedin, and K. Qarage, “Factor Graphs and Message Passing Algorithms”, Mathematical Foundations for Signal
Processing, Communications and Networking, CRC Press, Feb. 2012.



Factor Graph Representation
The factor graph representation of (3) is

fl .ﬁr _fn.r
o &1 l £k J En |

F U S— Eclr ,5}:_1 ‘5£+1 I 5ﬁ_l
hl h-i,_- 'ﬁ'N

vy i Yk L

k41
vt Yo - M1 . M - vy g |——

@ Cycle-free nature guarantees convergence of message passing.
@ Analyze the graph of £ only, calculations for > being analogous.



Exact Solution

The estimate £ can be expressed as

‘fN = min (UN}Gﬁ (UN—I)} 1GJ; {Ul) }G{f (é{])) (4)
The factor graph-based estimate (FGE) of the clock offset 3y is then given by

5N:£N_21£’N.

@ Solution is applicable to cases when the likelihood f (U &) is Gaussian,
log-normal or exponentially distributed.

A. Ahmad, D. Zennaro, E. Serpedin, and L. Vangelista, “A Factor Graph Approach to Clock Offset Estimation in Wireless Sensor
Metworks", I[EEE Transactions on Information Theory, vol. 58, no. 7, pp. 4244-4260, July 2012.

A. Ahmad, D. Zennaro, E. Serpedin, and L. Vangelista, “Time Varying Clock Offset Estimation in Two-way Message Exchange in
Wireless Sensor Networks using Factor Graphs®, ICASSF, Kyoto, Japan, March 2012.



Performance Bounds

Performance Bounds - Contributions

@ Classical as well as Bayesian lower bounds on the variance of the
aforementioned estimators are derived.

Valid for arbitrary distributions from the exponential family.

@ Cramer-Rao bound (CRHB) and Chapman-Robbins (CHRB) are derived
for unconstrained and constrained likelihood functions, respectively.

Unconstrained Likelihood:

N

f(Z;p) xexp | p> n(Z;) — No(p)
j=1
Constrained Likelihood:
N N
f(Z:ip) xexp | p> n(Z;) —No(p) | |]1(Z; —p)
j=1 j=

A. Ahmad, D. Zennaro, E. Serpedin, and L. Vangelista, “A Factor Graph Approach to Clock Offset Estimation in Wireless Sensor
MNetworks", [EEE Transactions on Information Theory, vol. 58, no. 7, pp. 4244-4260, July 2012.



Classical Bounds

The CRB for p in the unconstrained likelihood function is given by

1 2 _ 824 (p) |

Var(p) =

The CHRB for the parameter p given the constrained likelihood function can be expressed as

k h2

ar(p) = |1n

where My, (h) is the MGF of the statistic n( Z;) and

L

¢(h) =E[exp (2hn(Z;))1(Z; — p — k)]

with the expectation taken with respect to any Z ;.




Bayesian Bounds

The Bayesian CRHB states that

—

Var (p1) > Jop (k) = [T op (k)kk -

where J ]_:1L (k) is the Bayesian information matrix. For our Gauss-Markov evolution model, it
follows that

1
Jer(k+1) = (o2 + Igp(K)  +03,

The BCHRB for the parameter p;. can be expressed as

1

Jer i

Var(pr) =

_ k o h- 2
Jer . = inf Tk“::; 11 Ti(hg) = ( M;E(hj)Mn(Ehj)) exp [Z (hy hﬂ’.:r—l] ] |
k a E,-

ke

j=1 7=1
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Simulation Results
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MSE decreases with increasing number of message exchanges.

In case of Gaussian likelihood, the lower bound is achieved, while for
exponentially distributed likelihood function, lower bound is not achieved.

MSE for exponentially distributed likelihood function decays faster (at a
rate of 1/N? as compared to 1/N in Gaussian case).



Inactive Node Synchronization

Inactive nodes can synchronize themselves by overhearing the message exchanges
between the reference node and another receiver node.

@ Node m transmits its timing
information to node r

@ Node r replies with its own ‘ i
timing packet to m = ”

@ A node o overhears the timing
messages exchanged between ‘ |
nodes m and r w

U, 2T? — T} =d+ B + X
V2T —T)=d+ B, +Y,
W, 2T — T =d+ B0 — Br + Z; (5)

@ For X,;, Y, and Z; i.i.d exponentially distributed, the ML estimates d, &, and 3,
were proposed in (Chaudhari, 2010) using a complex graphical search.



Contribution - An Analytical Proof

@ The problem of ML estimation can be recast as an instance of convex

optimization.
i‘th’
(d, Br, Bo) = d%ﬁi:}fﬂ 2} (U; +V; + W, — 23, — 3d)
1=

stUygy—d—B,>0, Vyy—d+8,>0, Wy —d—F,+ 5. >0

Using KK'T conditions, the offset and propagation delay estimates are given
by

Y

d=Uqny+Wuy — Vi, Br=Viy — Wy, Bo=2V(1y —Uqy — W

Simpler alternative bypassing the graphical analysis.

A. Ahmad, A. Noor and E. Serpedin, “Joint Clock Offset and Skew Estimation for Inactive Nodes in Wireless Sensor Networks”,
Conference on Information Sciences and Systems (CISS), Maryland, USA, March 2011.



Contribution - A Bayesian Viewpoint

@ A Bayesian approach, similar to the one for pairwise synchronization,
can be used for clock estimation for inactive nodes.

@ Bydefiningé =d+ 5, v =d+ 5,and ¢ =d + 5, — 5, (5) becomes

Inactive Node Synchronization Pairwise Synchronization
U = & + Xk
Vie =t + Y U = & + Xk
Wi = G + Zy, Vie=vr + Y

@ Notice that the factor graph in this case will have precisely the same
structure, just a redefinition of &, ¥, and ;..

@ Our message updates based on max-product will result in an exact
solution for the case of inactive node synchronization as well.



Distributed Network-wide Synchronization

@ A natural extension of the aforementioned discussion is network-wide
synchronization.

@ Each node attempts to synchronize itself with a reference node by
exchanging messages with neighbors.

@ A distributed algorithm will enable a node to estimate its own clock offset
as opposed to centralized processing.




Related Work

Distributed network-wide synchronization algorithm by exploiting the
natural network constraint that the relative clock offsets in network loops
sum to zero (Borkar, 2006).

A synchronization algorithm by assuming no initial clock offsets but
time-varying skews among the oscillators (Freris, 2009).

A Laplacian-based algorithm for establishing agreement on oscillation
frequencies based on standard consensus (Simeone, 2007).

Recently, distributed network-wide synchronization proposed using
belief propagation for Gaussian distributed network delays (Leng, 2011).



Contributions

@ A network-wide clock synchronization algorithm is proposed in case of

exponentially distributed network delays by representing the sensor
network as a factor graph.

@ Inference is performed using max-product message passing algorithm.

@ A closed form solution is obtained for the belief of each node about its
clock offset.

@ The proposed algorithm is fully distributed since the clock offset of each
node is determined at the node itself, instead of centralized processing.

D. Zennaro, A. Ahmad, E. Serpedin, L. Vangelista, “Network-Wide Clock Synchronization via Message Passing with
Exponentially Distributed Link Delays", IEEE Transactions on Communications, vol. 61, no. 5, May 2013.



System Model

@ Building block is the pairwise message exchange discussed earlier.

od
a—

T M y i
Usjk :Tj;:,:f — Ti{k =d;; +(8; — B:)+Xijk

A
Vije =T — T3 =dij— (85 — Bi)+Yijk B; — Bs
Xije~E/N), Y~ E(/A)

T
@ (Ui (1) Ej__{l}]T constitutes a sufficient statistics for estimating (3, — 3:)
S:i = (B85 — B:) + Z;; (6)
@ Consequently, S;; ~ £ (8; — Bi, 5705 ), S0 that

P (Sii]Bi,B;) = KAexp (2K A\|S;; — 8 + 5i]) -



Clock Offset Inference

Our goal is to infer 3; for all ¢, using data S;; gathered from the message
exchanges between pairs of nodes (i,j5) € L.

Inference about 3; can be obtained by

R

fi = argmax p; (5;]S)
where the a-posteriori (AP) pdf, p; (5;|5), is given by

p (515) = [ p(315) 4 7)

where 3; = [B1,....Bi—1,Bit1.. ... Bn].
Obtain the AP pdf using factor graphs and message passing.



Max-product Message Passing

MBy—h g
II/'_\H _.-
B :

' J
—

mg; sh;, (Bi) = pi (Bi) - H Mh;; —B; (Bi)
JEN G~ =y ||| e

Mhp;,— 8, (Be) = max lmg; sh;, (Bi) hie (Bi, Be)]

-h‘i I _-'ll-h‘_'l"li

bi (B:) = pi (B:) H Mp.;—8; (Bi)
JEN;

M Ey—hyy T J'm"l_;l:—hﬂt
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@ The belief b; (3;) represents the AP pdf.

@ Maximization of the belief yields the clock offset at each node ;.

e

[3; = arg 11}3331 bi (_51'}



Message From Factor to Variable at lteration ¢

The message mg_} 5, ¢an be approximated as

mil) 5, (Be) & exp (=2 [8e — (Sie + C2,)]) - (8)
(7 (®) ( “*”) (t)
if ) " eVERn T . i 6
(%) _ {t} -1 () 4 q
Cile =+ [WE}( : )Hﬂ;) ( ot )} (9)
odd ?"Efg.

\,

where ( (5 _ 1) is the number of neighbors of node i, other than node ¢, that

have Sent non-constant messages at iteration (t — 1) and the sequence
{WE} (n)} denotes the non-constant messages sent by neighbors of node i,
other than node ¢. )




Distributed Network-wide Synchronization

An Example

@ The sequence {III-f’I.':? (n) } IS given by

{H_;rt_[;} (ﬂ_}} _ {S_ﬂ_ 1 .‘:—T{t—l}j S, + C(t—l] Sui + GH_I]

fey— g p—i ® r—+1

@ Sort to obtain W (1), W) (2) and W/ (3).

@ The quantity ") is then determined using (9).

i—r F



Belief of Clock Offset at Node :

@ At iteration ¢, belief bf} Is updated as

b (B:) = pi (B:) - [ mi— 5 (B)
FTEN5

—1

(0
e = (ZKAZ 8 — w® (n)‘) | (10)

where Wf} (n) is the sorted sequence of messages received from neighbors
of node i.

@ Node i can compute the estimate 3; as follows

Sfﬂ = arg max bgﬂ (3;) (11)



Distributed Network-wide Synchronization

A Synchronization Algorithm
J = {0}.

For ¢t from 0 on
MNode i = 0 sends its timing information to its neighbors

For each node i £ 7 in parallel to node 0

Mode i computes the belief 5,5” (3;) according to (10) from data H-"I.':t:'{n} received from its
neighbors. h
Node i computes the estimate 3*.

If 13 — gLV /80 1 5 ¢
89 = jr.

Node i transmits all the messages S, + C"ﬂf, computed according to (8) and (9),
to its neighbors £.

Else
Sitj SEt—l}
_,T' .TL_J{E}-

End If End For
For each node i = 7 in parallel to node 0
B — 1)

End For
End For



Distributed Network-wide Synchronization

Simulation Results
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@ MSE decreases at the fastest rate when the underlying graph is random
geometric (RGG) as compared to chain graph (CG) and mesh grid (MG).

@ The complexity of the algorithm is almost linear in terms of number of
packets exchanged for all three topologies considered.

@ Suitable for implementation in a WSN.



Joint Localization and Synchronization (JLS)

@ Several WSN applications such as geographical routing, disaster
rescue, efc., require location awareness.

@ Node localization in WSNs has been extensively studied.

@ Time of arrival (TOA), time difference of arrival (TDOA) and received
signal strength (RSS) are used for node localization.

@ Since, TOA and TDOA are time-based techniques, synchronization is an
important prerequisite in node localization as well.

@ This close connection necessitates a joint estimation approach.



Related Work

Joint localization and synchronization in WSNs has received a lot of
interest recently.

Optimal and sub-optimal algorithms for estimating an unknown node’s
position and fixed clock parameters were derived in (Zheng, 2010).

A weighted least squares approach for joint estimation is devised in (Zhu
2010) for fixed clock parameters.

Several synchronization-only approaches have considered

time-variations in clock parameters in WSNs (Chaudhari, 2010, Kim,
2012, Ahmad, 2012).

Important to incorporate time variations to reduce re-synchronization
requests.



Main Contributions

@ We introduce the idea of temporal variations in clock parameters for joint
localization and time-varying clock synchronization.

@ A simple algorithm proposed to iteratively estimate the time-varying
clock parameters and the unknown node’s location.
Tool: Expectation-Maximization (EM), Kalman Smoother.

@ The M-step is further simplified by linearizing the data to estimate
location.
Tool: Least Squares (LS).

@ Performance is benchmarked by deriving the Hybrid Cramer-Rao bound
(HCRB).

A. Ahmad, E. Serpedin, H. Nounou and M. Nounou, 'Joint Node Localization and Time-Varying Clock Synchronization in
Wireless Sensor Networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 10, Oct. 2013.
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Sjk =a(Rjk —dj —wjx)+ 5
=a (Sjk+dj +wjk) + 8,

=
e
|

where d; = ||« — s;||, node location = = [z; x3]", j** anchor location s, .

Substitute 9, = l, 9, = s , (12)
‘Y

¥



Incorporating Temporal Variations

@ We assume that 6 evolves according to a Gauss-Markov process

Or = Op—1 + np
@ Collecting messages exchanged with all anchors at the k" instant, we

have
yr —d(x) = HpOp + w;. .

@ The joint distribution of {y, ®}, parameterized by =, can be expressed as

fly,®;x) = f(@}f(:ul*@ x)

= f (6o) H f(Ok|Ok—1) H f(yr|Or:x) .

@ Need simpler estimators for (@, =) than the costly MAP estimator.



Expectation-Maximization (EM) Algorithm

lterative method used to determine the ML estimate of the parameters of
a given distribution from incomplete data (Dempster, 1977).

E-Step:

Given 'Y and y, determine the likelihood function
) (3_‘.: :E:{ﬂ) = Eo|y.&0 In f(z;x)] . (13)

M-Step:

Obtain an estimate of = at iteration index : + 1 as follows

AR arg max () (:L‘.,i‘(i)) . (14)

Given &', the system is a linear Gaussian state space model in ©.

Minimum mean square error (MMSE) estimator éf&{ can be obtained

from a standard Kalman smoother.



E and M-Steps

@ E-Step (Kalman Smoother):

e Forward Recursion
e Backward Recursion

@ M-Step
After some simplification, it can be shown that

| K iy 12
20T — are I'I}EHZ Hi}h () — H;;HL}HH :
k=1

Algorithm 1 The EM Algorithm

Input time-stamps {S; i, R &, Sjk. Bk }-ff:l and anchor locations

Initialize &Y.

fork=1,.... K do _
Determine @ (=, =(*)) using the MMSE estimator E?Ef

end for |
Obtain ML estimate &'**!) by solving the norm minimization problem.

return

)
K

o R W




A Least Squares Alternative

@ The location estimator in EM requires a potentially costly 2-D norm
minimization problem.

@ Need to find a simpler alternative.

@ We can use the estimates of é;a from the Kalman smoother.

@ Non-linearly process the data and ignore the second order noise terms.

The refined LS location estimator 2" at iteration i + 1 is given by

- _ Y _ 51 Y :
FHD (MTATE,E:) 1AM) MTATS@O pO) (15)




Least Squares Algorithm

Algorithm 2 The LS Algorithm

Input time-stamps {S; &, B k. Sj 5, Rjk }-f;l and anchor locations
Initialize &%)
fork=1.,.... K do _

Determine the MMSE estimator ﬁ'ifl:}{ from the Kalman smoother.

end for _
Obtain the LS estimate &+ using (15).
return

N AR Wb

@ The LS algorithm presents a simple closed form alternative to the 2-D
norm minimization in the M-step.

@ Performance is expected to be similar to EM for low noise variance.



HCRB

. . . ~ T r
@ The covariance matrix of £ = [E} ,IT] IS lower bounded as follows

‘Theorem
[(& e) (- s)] [H(O, )

where the hybrid information matrix H(©, =) has entries

N
H{H,  HjHg )+’I‘ 3o 2K (@ —5)) (@ — s;)"
2 2 2 HE

Tt (TR

H11= blkdiag (

o a

=1 |z — s;

i — HT — [(H'{d’ {m))“‘}“_j HLd (m))Tr |

2 2
Tw Tw

@ The lower bound helps to benchmark the performance of EM and LS
estimators.



Joint Localization and Synchronization

Simulation Results

R , : i R

@ Fig. shows updates of exp (Q (3:, :E“))) for @ = (2,4).

@ We converge at the true coordinates in about ¢ = 12 iterations.



MSE of clock parametars

Simulation Results
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@ The backward step yields an improvement in the estimates of clock
parameters with increasing K .

@ MSE of location estimates decrease with o2 but does not achieve the
bound. Could be that the lower bound is unachievable (Messer, 2006).

1 .l'-:";,2

@ EM and LS estimators have similar performance for low to moderate

noise variance.



Conclusions

Convex optimization techniques used to provide alternative proofs of ML
estimators derived by graphical maximization in prior contributions.

A novel factor graph approach is proposed to incorporate the effects of
time-variations in clock parameters.

The results have been extended to network-wide clock synchronization
in WSNs.

Identifying the close connection between localization and
synchronization, a joint estimation approach is proposed.

Performance bounds have been derived to benchmark estimators. Can
be useful in other problems in parameter estimation theory!

Our work also demonstrates the potential of graphical models to solve
iInference problems in wireless communications.



Future Work

Develop synchronization algorithms that do not assume a specific
distribution of the network delays.

Incorporate the effect of clock skew for network-wide synchronization.
This can reduce re-synchronization requests.

Incorporate node mobility and location uncertainty in joint localization
and synchronization

e Random walk model
e Random way point model
e Position, velocity, acceleration model

Holy Grail! A mathematical proof of convergence of loopy belief
propagation in general graphs.



Thank you!

Questions?



