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BASIC AUTONOMOUS SPEECH
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-ﬁ Conditions for Speech Recognition

Silent Room
Short Isolated Speech: (>20dB SNR)
words, phrase (<2sec)
4 )
. Living Room (20
Continuous Speech:
sentences (>2sec) } \"'10(3”3 SNR)
(o
Attached Microphone NOISY R%OT %
(several cm — 10cm) (<10dB SLII\IFS{I) <
Remote Microphone W \_ Y,
(10cm — 5m) p

(>5m)
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Cloud ASR

Continuous Speech Recognition over Internet

Attached Mic Silent Room
(<10cm) (>20dB)

<J_b Language Model with small Ontology

Attached Mic Living Room (20
(<10cm) ~10dB)

‘ Array Microphone

Remote Mic: Living Room (20
(<5m) ~10dB)
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AOur Target J

-i Autonomous ASR
Isolated Speech Recognition using own SW/HW

Short Isolated Speech: Long Distance Mic:
words, phrase (<2sec) (>5m)

Remote Mic: Silent Room
(10cm — 5m) (>20dB)

(several cm — 10cm) ~10dB)

Noisy Room:
exhibition (<10dB)
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ﬁ Voice Activity Detection
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Autonomous Speech Recognition

L MMMWW

Candidates of Recognition Results

(1) Good Morning D | l‘ Y ol a
(2) See you

(3) How are you ?
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Automatic Speech Selection

Candidates of Recognition Results
(1) Good Morning
nl. o (2) See you

(3) How are you ?

B R R R R R RRRRRRRRRRRSSSRRBERRRRRRRRRTRRI

Recognition Result: Good Morning
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-2014-

= Producer & Sales Company
by Deagostini Japan, and Raytron Inc, JP

= Design & Robot Controller

by T.Takahashi, Robo-Garage Ltd

= Autonomous ASR
by Miyanaga Lab, HU
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Part 2

NOISE ROBUST SYSTEMS
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Running Spectrum

Running spectra are obtained by accumulating short-time
spectrum
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-* Modulation Spectrum

CMS, RASTA and RSF focuses on modulation spectra.

Running Spectrum

Modulation spectrum: spectrum versus time
trajectory of frequency.

Modulation Spectrum
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Mod-F of Clean and Noisy Speech

Speech components are dominant around 4

Hz 1n modulation spectrum.
Noisywhe noiset 5 dB SNR)

s000

. -
~J M~
- -
[&) [&)
f o -
a a>
= =
= o 2000
4> L b
- p -
LC LC
1000
T SRR S R ey 0 e ‘|=E S A
15 20 ] 10 15 20
Modulation frequency(Hz) Modulation frequency(Hz)

Lower modulation frequency components can be assumed as
noise because of little changes 1n noise components.
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-i Filtering over Running Spectrum

Speech components are dominant around 4
Hz 1in modulation spectrum.

Modulation Spectrum
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RASTA 191y and RSF 2002

RSF (Running Spectrum Filtering)
= enhances perceptual auditory components.

= decreases noise components relatively by band-pass
filtering in cepstral sequences.

—~ o
C(n,k)=>h@@)-C(n—1i,k)
=0 Coefficients in FIR Filter

H. Hermansky, et. al., "Compensation for the effect " REE b i

of communication channel in auditory-like analysis of RASTA(HR) RSN N NS S N N O O O O I S O

speech (RASTA-PLP),” Proceedings of European X TN I bbb
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&DRA

DRA (Dynamic Range Adjustment)

= normalizes amplitude of cepstral vectors in time
domain (use of maximum value during utterance).

= suppresses dynamic range distortions caused by
additive noise.

A, =max | C(n, k)|

1<k<T
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S.Yoshizawa, Y.Miyanaga et. al., "Hardware
Implementation of a Noise Robust Speech Recognition

System Using RSF/DRA Technique", IEICE Technical
RS F D RA Report, CAS2003-42, VLD2003-52, DSP2003-72,
(2002) pp.127-132, June 2003.

Comparison in cepstral time-trajectories at 4th order

_Noisy
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Baseline RSF/DRA processing
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RSA (Running Spectrum Analysis)

Speech components 1n 0.5 — 7 Hz of the Modulation
Spectrum Domain are directly selected by DFT/FFT
operation.

Modulation Spectrum Domain Operation
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.* Conditions of Robust-ASR

Table 2. The condition of speech recognition experiments

ASR Parameter name Parameter value/type
Sampling 11.025 kHz (16-bit)
1 1 Frame length 23.2ms (256 samples)
for SI m I Ia r Ja pa nese Shift length 11.6 ms (128 samples)
Pronunciation Phrases o
Windowing Hanning window
under Low SNR ( 10dB, 15dB) Speech Bili=1,..,12)
Feature Abi(i=0,..., 12),
vectors APhi(i=0,...,12),
Training Set 30 male , 30 female
3 utterances each
Table 1. RSA passband specifications Testing Set 10 male, 10 female,
3 utterances each
RSA Type LCF HCF Acoustic Model 32-states isolated phrase
(a) 1 7 HMMs
(b) 1 15 Noise 4 types from NOISEX-92
(c) 1 35 varieties (white,pink, HF radio
(d) 1 40 channel,
(e) 0.5 7 babble)
(f) 0.5 35 SNR 10 dB, 15 dB, 20 dB
(g) 0.1 7 Filtering RSE RSA,
) 0.1 35 methods
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.* ASR Results using RSA

Table 4. Avg. recog. accur(%) for 6 similar pronunciation male

Table 3. Avg. recog. accur(%) for 100 common male speech speech
10 dB 15 dB 20 dB 10 dB 15 dB 20 dB

RSF 72.5 87.6 92.8 RSF 58 60 66
RSA:Type(a) 69.3 83.5 88.5 RSA:Type(a) 57 61 61
RSA:Type(b) 74.0 87.0 91.3 RSA:Type(b) 63 65 71
RSA:Type(c) ?6‘6 90.1 94.9 RSA:Type(c) 65 66 68
RSA:Type(d) 76.5 89.9 94.8 RSA:Type(d) 65 66 70
RSA:Type(e) 66.4 81.2 86.5 | RSA:Type(e) 62 63 67
RSA:Type(f) 72.6 87.2 92.7 RSA:Type(f) 69 67 73
RSA:Type(g) 66.9 81.2 86.4 RSA:Type(g) 55 5b 61
RSA:Type(h) 72.6 87.2 92.7 RSA:Type(h) 68 I 67 I 73

Table 6. Avg. recog. accur(%) for 6 similar pronunciation female

Table 5. Avg. recog. accur(%) for 100 common female speech speech
10 dB 15 dB 20 dB 10 dB 15 dB ‘ 20 dB

RSF 56.3 79.9 89.1 RSF 55 62 | 71
RSA:Type(a) 51.5 75.9 84.4 RSA:Type(a) 60 67 | 70
RSA:Type(b) 56.3 80.3 89.4 RSA:Type(b) 60 67 70
RSA:Type(c) 55.8 80.8 OT.1 RSA:Type(c) 52 63 IS
RSA:Type(d) |_283 8050 1 911 RSA:Type(d) 58 66 75
RSA:Type(e) 55.0 80.2 88.2 RSA:Typel(e) 60 [ o2 6o
RSA:Type(f) 57.6 82.3 90.5 RSA:Type(f) 57 | &4 69
RSA:Type(g) 55.5 80.3 88.2 RSA:Type(g) 62 | &2 69
RSA:Type(h) 58.7 82.7 90.5 RSA:Type(h) 59 | 64 68
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Robust ASR

Hoisy
speech

VAD
]
Calculate MFCC

with RSA with RSA
type(c) type(h)
| |
ASR ASR

| |
Select the maximum likelihood

Candidate of results with male or female

[ Female, NSP |

1I0dB | 15 dB 20 dB
N [ 25 2.1
I 7 7

2.4 2.8 2.0

Male, NSP
Male, SP

Female, SP

Improvement (%) on ASR
Accuracy on NSP and SP

Similar - ISP
phrase Decide SP or . Final result
list H5P
_|Wmale or female
Calculate MFCC
- with RSA with RSA -
typeif) type(d)
&SR ASR
Select max & Final result
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-i High Speed Eco ASR HW System

Design of Green LSI
lower clock, sub-threshold,

parallel/pipeline,
dynamic architecture

Definition of Real-
time
180ms for speech
processing

H

Selection of LSI

Design Technology
90nm, 65nm

J Robust ASR v1

S.Yoshizawa, Y.Miyanaga et. al., "A VLSI Implementation of a Word
Recognition System for Low-Power Design", IEICE Technical Report,
CAS2002-28, VLD2002-42, DSP2002-68, pp.13-18, June 2002.
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ﬁ Current HU Robust ASR v4 (2014)

PC Interface with e ﬂ? B e
HU_ASR Board i3 o '° ks :‘Eﬁ STLLLET

é’gm 25

HU-ASR Board

55mm X 44 mm
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-* Robot Implementation

= Autonomous Speech Recognition <
= Speech Synthesis
= Quick Response

s Control to Consumer Electronics and
Machines

| :, 4 welfare
speech therapy
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Summary

Autonomous ASR

Integrated Architecture of Speech Detection, Robust
Speech Analysis, Speech Recognition, Speech Selection
Higher Speed Processing than DSP and Software
Superior in Energy Saving than DSP Solutions
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