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1 Introduction
The greatest endeavor of human intelligence may be to comprehend the
brain; there is undeniable value in knowing how our thoughts, actions,
andemotions areprocessed. Thebrain,whichweighs about 1.5 kilograms
and has over 100 billion neurons connected to one another nearly 100
trillion times, is the most complicated organ in the human body.

Over the past 60 years, many mysteries about the functioning of the
brain have been resolved. For instance, advancements in the ϐields of mi‑
croscopy and staining methods revealed the building block of the brain
‑ the neuron, whereas progress in the ϐields of electrophysiology taught
us that neurons communicate with each other via electrical and chemical
signalling. Moreover, we learned that the brain is composed of two types
of neurons, excitatory and inhibitory which can engage in a synchronous
”ϐiring dance”, giving rise to brain waves.

Modern imaging techniques have demonstrated that the brain’s archi‑
tecture has a topological organisation, typically divided into four subsec‑
tions called lobeswhere each lobe is associated with a speciϐic brain task.
For instance, the frontal lobe is associated with planning and problem‑
solving tasks, theparietal lobe is the situ for languageprocessing,whereas
temporal andoccipital lobes are associatedwithmemory andvisual inter‑
pretation, respectively.

One of the most interesting brain topics that spark fervent debates
across the scientiϐic community and is also the main topic of this the‑
sis is brain oscillations. Brain oscillations are repetitive patterns of neu‑
ral activity produced speciϐically by the central nervous system in both
cortical and subcortical areas. Experimental evidence produced in the
last two decades of research underline their role in brain communica‑
tion and computation. In particular, a fast brain oscillation also known
as gamma (30‑80Hz) has received considerable attention due to its in‑
volvement in several cognitive processes such as attention, memory, and
information processing. Furthermore, clinical studies have further evi‑
denced the importance of such rhythm as several neurological disorders
such as Alzheimer’s disease and schizophrenia share a marked impair‑
ment of gamma oscillations.

Understanding brain oscillations, their role and how their alteration
leads to brain disorders, involves investigating the mechanisms through
which these oscillations may emerge. It is now acknowledged that such
brain rhythms originate in cortical circuits through amechanism of push‑
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pull interaction between the activity of two populations of neurons (i.e.,
excitatory and inhibitory). In particular, there are two type of cortical net‑
works necessary for the gamma oscillations to emerge: the interneuronal
gamma (ING) ‑ a cortical circuit formed by solely interneuronswhich gen‑
erates gammaactivityunder tonic excitationand thepyramidal‑interneuron
gamma (PING) ‑ a cortical network formed by both excitatory pyrami‑
dal cells and inhibitory interneurons where fast excitation provided by
pyramidal cells and delayed feedback inhibition provided by inhibitory
interneuron alternate, giving rise to oscillatory activity speciϐicallywithin
the gamma band.

This thesis focused on three research objectives. Our ϐirst objective
consisted of performing visual experiments using different stimuli in the
animal model and study oscillatory dynamics within local circuits such
as ING and PING. Secondly, we focused on developing and implement‑
ing novel time‑frequency analysis useful in the quantiϐication of fast os‑
cillatory activity such as the gamma rhythm observed in the recorded
neurophysiological data. Herein, we implemented a novel method called
superlet‑transform(SLT) and contributed in thedevelopmentof its derivates
such as the Fractional superlets (FSLT). Furthermore, we developed a
novel method for spike detection using a machine learning approach and
showed that our method has better performance compared to the classi‑
cal threshold‑based method. Finally, we focused on the etiology of brain
disorders that share a marked impairment of gamma oscillations such
as schizophrenia and Alzheimer’s disease, performed behavioral exper‑
iments in the animal model in order to ϐind human phenotypes of the
disorders, and proposed novel treatments that could improve the symp‑
tomatology.

The work for this thesis required a multidisciplinary approach, inte‑
grating biological and medical ϐields with more technical ones like engi‑
neering, computer science, and signal processing. In the paragraphs that
follow, we will provide a summary of this work.

2 Methods
There are several methods discussed in this thesis that can be conceptu‑
ally split into two categories: experimental methods used to record the
brain’s electrical activity and data analysis methods used for decoding
the recorded extracellular brain signals. The next sections, will summa‑
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rize each category, with emphasis on the second category as it comprises
novel methods introduced by the thesis itself.

2.1 Recording the brain’s activity
The ϐirst part of the thesis’s method section discusses experimental tech‑
niques used for recording the brain’s electrical activity. In particular,
the centrepiece of this section consists in describing in vivo electrophys‑
iological recordings, which have been widely performed by the author.
The advantage of such technique is that allows brain scientists to investi‑
gate the dynamics of neural circuits and correlate its ϐindings with animal
behaviour. All experimental studies performed in this thesis were con‑
ducted on animal subjects, in particular mice of the species Mus Muscu‑
lus, and followed strict ethical guidelines established by the local and the
European Union legislation in the matter of animal welfare.

A typical in vivo electrophysiological experiment starts with getting
access to the animal’s brainbyperforminga stereotaxic surgery conducted
in a sterile environment. The animal is ϐirst anaesthetized, and subse‑
quently placed on a stereotaxic instrumentwhich keeps the animal’s head
in a ϐixed position and allows for a correct identiϐication of the targeted
area that we want to record from. Access to the brain is achieved by per‑
forming a craniotomy ‑ an invasive surgical procedure which consists in
removing a small part of the scalp and subsequently the bone with the
help of a scalpel and a dental drill, respectively.

Once the animal’s brain is exposed, recording devices such as silicon
probes are ϐirst, mounted on the stereotaxic’s manipulator and secondly,
slowly lowered into the brain. This procedure can take up to 1 hour, as
minimal damage to the brain following the insertionmust be ensured. De‑
pending on the scientiϐic question, different silicon probes can be used.
For instance, if one is interested in an animal behaviour during an explo‑
ration task thatmust be recorded formultiple days, chronic silicon probes
are preferred. As the experimental procedures performed in this thesis
were the type of non‑recovery (i.e., the animal does not recover after the
experiment) silicon probes of the type acutewere used. That is, the probe
is inserted for a few hours, and then recovered, cleaned and stored for
reuse. To minimize animal use, multiple recordings are collected from
each animal, over a period of 6‑8 hours.

Once inserted, the silicon probe records two types of the brain’s ex‑
tracellular signature: spikes ‑ ϐluctuations of the membrane potentials of
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the neighbouring neurons and local ϐield potentials ‑ activity of synchro‑
nized neurons nearby of the recording site. The recorded signal is ini‑
tially of low amplitude, thus requiring further ampliϐication. Once the sig‑
nal is ampliϐied, it is further digitized using an analog‑to‑digital converter
(ADC) and ready to be pre‑processed and analysed. Depending on the
experimental demands, the signal can be pre‑processed into two types:
local ϐield potentials ‑ low frequency part of the recorded signal consist‑
ing in extracellular potentials with frequencies ranging from 0.5‑300Hz
andmulti‑unit activity ‑ higher frequency part of the recorded signal con‑
sisting of neuronal spiking activity with frequencies above 500Hz.

2.2 Decoding extracellular signals
Advancements in engineering allows scientists to record large amounts
of electrophysiological data through large electrode arrays that have hun‑
dreds of channels at a high sampling rate (>32kHz). However, as much as
pre‑processing the electrophysiological data is generally a simple proce‑
dure, analysing such data can be a more complex endeavour. In the next
sections, we will summarize all the methods used and developed in this
thesis to analyse both local ϐield potentials and multi‑unit activity.

Local ϐield potentials

Local ϐield potentials are usually obtained by ϐiltering the raw electro‑
physiological signalwith a digital band‑pass ϐilterwith a cut‑off frequency
between 0.5‑300Hz. Once the signal is ϐiltered and downsampled (i.e., for
computational efϐiciency) time‑frequency analysis canbebeperformed in
order to characterize the dynamics of brain oscillations. Popular inves‑
tigative methods used to extract time‑frequency information from LFPs
consist in performing a short‑time Fourier transform (STFT) or a Contin‑
uous Wavelet Transform (CWT). However, both methods present some
short comings regarding the precise estimation in time and frequency
(i.e., they arenotParetooptimal). This limitation is causedby theHeisenberg‑
Gabor uncertainty principle which states that is impossible to have a si‑
multaneously precise estimation of a signal in both, time and frequency.
That is, the precise estimation of a signal in time requires trading off pre‑
cision in frequency, and vice‑versa. To overcome this limitation, an im‑
proved method of CWT called Superlets (SLT) has been developed.
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2.2.1 Superlet transform

Brieϐly, the Superlet transform (SLT) combines geometrically the power
values of a set of Morlet wavelets with different number of cycles. Pa‑
rameters of the SLT include base cycles ‑ c, the number of of cycles of the
shortest Morlet wavelet and the order ‑ o, the number of wavelets in the
set. SLT outperfoms STFT and CWT, especially when estimating fast os‑
cillation packets present in electrophysiological data. An example of its
outstanding performance is shown in Figure 1. Detection of oscillation
packets present in human electroencephalography (EEG) data are clearly
more visible with SLT compared to STFT, CWT, and MMCE.

SLTx,c1,of (f, t) =

[ of∏
i=1

Px(c1i, f, t)

] 1
o

(1)

where
• x is the input signal x(t),
• c1 is the number of cycles of the shortest wavelet,
• o is the order of the superlet at frequency f ,
• Px(c, f, t) is the power (2|A|2) of the responseRx, i.e. the convolution
of the signal with the wavelet.
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(a)

(b)

(d) (e)

(c)

Figure 1: Detection of fast oscillation packetswith different time‑frequencymeth‑
ods. (a) Three oscillation packets with frequencies at 40,90, and 120Hz were inserted
in a single trial in a human EEG recording. (b),STFT (c) CWT, (d) MMCE, (e) SLT. The fast
oscillation packets are clearly more visible in the SLT scalogram. Taken fromMoca et al.
2021

2.2.2 Fractional superlets

Asmentioned in the previous section, the order of the superlet is the num‑
ber of the wavelets in the set. Originally, this number was deϐined as an
integer number which is adapted in discrete steps depending on the fre‑
quency of interest. That is, low frequencies require a low order while
high frequencies, higher orders. This adaptiveness of the superlets is also
known as Adaptive SLT (ASLT). When ASLTwas deployed on electrophys‑
iological data, the scalogram was affected by banding. To solve this issue
we introduced a novel method called fractional superlet (FSLT) which al‑
lows for the order to assume fractional numbers. FSLT solves the banding
probelm, providing a scalogram which is smoother compared to the one
performed with the traditional ASLT.

FSLTx,c1,of (f, t) =

[
Px(c1(oi + 1), f, t)ϵ

oi∏
i=1

Px(c1i, f, t)

] 1
of

(2)

where,
• oi is the integer part of the order
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• ϵ is the fractional part.

Figure 2: Comparison of four time‑frequency representations (TFR) on electro‑
physiology data. The banding problem is clearly visible in ASLT (c). (d) FASLT offers
the smoothest TFR. Taken from Bârzan et al. 2021

2.2.3 Content evaluation of TFR using machine learning

As previously mentioned, oscillatory processes in the brain can be inves‑
tigated using a series of time‑frequency methods such as STFT, CWT, SLT,
and Choi‑Williams distribution. However, assessing which method offers
a better time‑frequency representation is not an easy task. In this study,
we introduce an empirical method based on machine learning which al‑
lows for the identiϐication of the ”best” TFR based on how much infor‑
mation they ”carry” about the experimental conditions. The input data
used in this study consisted in human EEG data recorded during a visual
recognition task and LFPs recorded from the mouse visual cortex during
a visual stimulation task. To ascertain which TFR performed better, max‑
imum accuracy and learning curves were measured.

In addition, we wanted to investigate which spectral features of the
TFRs were more relevant for the classiϐication. This was done by using a
feature perturbation method, called joined feature permutation. Brieϐly,
the method consists of perturbing a set of features that are strongly cor‑
related in the input layer of the artiϐicial neural network (ANN) and do‑
ing a post‑evaluation of the performance using two metrics: accuracy of
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classiϐication and mean‑squared error. This method allows for the iden‑
tiϐication of both important features for the classiϐication and also those
that act as distractors in the data (i.e., noise).

2.3 Multi‑unit activity
Neuronal spiking activity is usually obtained by ϐiltering the raw elec‑
trophysiology signal with a band‑pass ϐilter with cut‑off frequencies at
300Hz and 7kHz. Once the signal is properly ϐiltered, it is visually in‑
spected in search of spikes. Traditional spike detection is done by setting
an amplitude threshold. That is, each time the signal amplitude crosses
a certain threshold, the spike is extracted and used for further analysis,
such as spike sorting.

2.3.1 MLSpikeDetector

As mentioned previously, spikes are detected using an amplitude thresh‑
old that can be set eithermanually or automatically and is generally based
on the signal’s standard deviation or interquartile interval. An automatic
threshold is preferredwhenanalysingneural recordingswith tensof chan‑
nels. As much as this method is straight and easy to implement, it has
some drawbacks. For instance, hard thresholds tend to neglect spikes just
below the threshold, resulting in an amplitude distribution of the spikes
that is cropped unnaturally. To tackle this problem, we build a novel spike
detection algorithm using a machine learning approach which outper‑
forms the classical threshold based method. Our method can be sum‑
marized as follows. First, an automatic threshold based on the signal’s
standard deviation is set and spikes are detected. Secondly, a MLP classi‑
ϐier with two output nodes (spike and non‑spike) is trained on the spikes
detected in the ϐirst step. Thirdly, the trained classiϐier is slid along the
recorded data, sample by sample, and the points for which the classiϐier’s
spike class output probability is high are recognized as spikes and saved
in a probability signal. Finally, the resulting probability signal is thresh‑
olded and spikes are extracted.

2.3.2 Measuring neuronal interactions using curve ϐitting

Following the spike detection process, spikes can be regarded as time se‑
ries of discrete events (i.e., spike trains) and can be investigated using
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time‑series analysis methods. In particular, one can extract a spike train
for each putative neuron and make inference regarding neuronal inter‑
actions and synaptic connectivity within the recorded data. This is done
by performing a cross‑correlation analysis, where features such as peaks,
troughs, and satellite peaks of the computed cross‑correlation histogram
(CCH) reϐlect neural connectivity. For instance, a CCH with a peak at zero
delay is thought to represent a correlated neuronal ϐiring. Quantiϐica‑
tion of CCH features is achieved using different methods. However, these
methods present some limitations such as a priori assumption of the data.
Furthemore, they work best with rich spike trains failing when this is not
the case (e.g., neurons with low ϐiring rates). Another fact that must be
considered is that neuronal interactions can be of a sub‑millisecond scale.
Thus, performing a CCHwith a bin size of millisecond order can be point‑
less and it may lead to misinterpretation of the data.

More reliable methods for the measurement of neuronal interactions
have been proposed. For instance, ϐitting a Gabor function to a computed
CCH provides reasonably good results. In this study, we ϐitted a Gabor
function to a large dataset of computed CCHs of real experimental data
using different optimisation algorithms such as Trust Region (TR) and
Levenberg‑Marquardt (LM) and assessed the goodness of ϐit for each ϐit‑
ting problem using χ2.

3 Neural oscillations in brain disorders
Neuronal oscillations appear to bedysfunctional in conditions of the brain
such schizophrenia and Alzheimer’s disease, according to experimental
research using both animal and human models. A notable weakening of
gamma oscillations appears to be a common feature of both brain disor‑
ders. In this thesis, these brain disorders are reviewed, and alternative
treatment approaches that have been tested in our research institute are
proposed. Each disorder will be brieϐly discussed in the following two
parts, and section 4 will show the ϐindings of our research.

3.1 Schizophrenia
Approximately 1% of people worldwide suffer from schizophrenia, a dis‑
order of self and reality. Although the exact cause of the condition is un‑
known, genetic, environmental, andneurochemical variables are believed
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to play a role. Symptoms of schizophrenia include positive (i.e., hallucina‑
tions, paranoid delusions), negative (i.e., social withdrawal, loss of moti‑
vation), and cognitive (i.e., impaired volition and memory).

Clinical research on schizophrenia patients has shown a dysfunctional
neural circuit as a result of disruptions in neurotransmission, structural
changes in neuronal projections, and alteration of axonal integrity. Nu‑
merous investigations have also discovered aberrant oscillatory activity
and poor synchronization, especially in the gamma rhythm. Additionally,
aberrant gamma oscillations appear to have clinical correlates (i.e., hal‑
lucinations, psychomotor poverty). A more detailed description of these
ϐindings is presented in the thesis.

There has been a consensus among researchers over the past 20 years
that schizophrenia may also have its roots in N‑methyl‑D‑aspartate (NM‑
DAR) hypofunction. The fact that NMDA antagonists, such as ketamine,
cause schizophrenia‑like symptomswhenadministered, has increased the
appeal of this viewpoint. NMDARs are glutamate receptors that are im‑
portant for a number of neurobiological functions of the brain, including
neuronal plasticity, learning, and memory. Activation of NMDAR requires
glutamate as a principal neurotransmitter and an agonist, which consists
of either L‑glycine or D‑serine.

Themechanism throughwhichNMDARhypofunctionmight cause schizophre‑
nia is the following. Dysfunctional NMDARs may lead to a altered excita‑
tory transmission within the GABAergic system, which in turn leads to
disrupted gamma oscillations. As a reminder, the GABAergic system is
formed by inhibitory interneurons, which are crucial in the emergence of
gamma oscillations (see ING or PING mechanisms described in the intro‑
duction). Thus, if the inhibitory population does not have sufϐicient tonic
excitation, rhytmicity, particularly within the gamma band, is lost.

In this study, we wanted to explore the NMDAR hypofunction hypoth‑
esis by performing in vivo and behavioral experiments in the schizophre‑
nia mouse model and test if NMDAR function can be restored using mod‑
ulatory agonists such as D‑serine. D‑serine is an important co‑agonist of
NMDAR, and recent evidence has shown that levels of D‑serine are altered
in schizophrenic patients. Result of both experimental and behavioral ex‑
periments are presented and discussed in section 4.
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3.2 Multi‑sensory gamma therapy
Gamma abnormalities have also been identiϐied in Alzheimer’s disease
patients, as was discussed in the previous section. Additionally, research
in theADmousemodel has shown that aberrant gammaactivity is present
even before the start of symptoms, indicating their potential as an early
biomarker.

Memory loss, personality disturbances, and irritability are signs ofAD.
Although the exact origins of this condition are unknown, it is believed
that a combination of genetic, dietary, and environmental factors con‑
tribute to the disorder. Patients affected by AD present an unusual build‑
up of proteins in various regions of the brain also known as beta‑amyloid
plaques (Aβ)whichhavebeen associatedwith neurological deterioration.

In order to cure AD symptoms, a new therapy approach speciϐically
targets gammaoscillations. Particularly, a novel therapeutic strategyknown
as gamma entrainment using sensory stimulation (GENUS) has found that
subjecting an ADmouse model to light ϐlickering stimulation at 40 Hz for
an hour each day for aweek increased the phagocytic activity ofmicroglia
which in turn decreased levels of Aβ and tau proteins — the pathologi‑
cal markers of AD. Additionally, mice displayed improved performance in
spatial learning and memory tasks when the light ϐlickering stimulation
was coupled with a sound stimulation at 40Hz.

In this study, we re‑engineered and used GENUS therapy and used
cutting‑edge time‑frequency analysis, including the superlet transform
(SLT), to measure gamma entrainment in the animal model. Additionally,
weexperimentedwith various light stimulationwavelengths to gauge their
impact on cortical entrainment. Section 4 of our summary discusses our
ϐindings.

4 Results and discussion
Theoutcomes of this thesis span a variety of disciplines, including biology,
medicine, and signal processing. These ϐindings have been presented at
conferences and published in several journals.

4.1 MLSpikeDetector
Weϐirst carriedout some in vivoexperiments and recorded fromthemouse
visual cortex during a visual stimulation task to test our approach for
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spike detection utilizing machine learning. Our ϐindings suggest that the
spikedetectionachievedbyourmethod is onparwith the classicalmethod‑
it detects >95%of spikes. Moreover, ourmethod has a novelty rate of over
15%, which indicates that at least 15% of all spikes are overlooked with
the traditional threshold‑based method. As a result, as seen in Figure 3,
the spike amplitude distribution is no longer chopped, but it decays nat‑
urally.

Figure 3: Amplitude distribution of detected spikes.(a) A comparison ofMLSpikeDe‑
tector (dark red) with the conventional threshold‑based technique (bright red); The
green area displays the number of spikes found exclusively by MLSpikeDetector; (b)
threshold detected spikes; (c) MLSpikeDetector spikes; and (d) the difference between
(c) and (d). Taken from Bârzan & Ichim. 2020.

4.2 Measuring neuronal interactions with curve ϐitting
In this study, we were interested in the temporal dynamics between two
populations of neurons ‑ inhibitory and excitatory ‑ at both millisecond
and sub‑millisecond resolution. Thus, a huge dataset of computed CCHs
from real experimental data was ϐitted with a Gabor function using sev‑
eral optimisation algorithms, includingTrust Region (TR) andLevenberg‑
Marquardt (LM), and the quality of ϐit for each ϐitting problemwas evalu‑
ated using χ2. The following is a summary of our ϐindings. Our ϐitting pa‑
rameters included both real and imaginary parts when we employed the
Levenberg‑Marquardt (LM) algorithm to solve our ϐitting problem, which
shouldnot havehappenedbecause ourGabor function shouldbe solved in
the real domain. Thus, we came to the conclusion that the ϐitting problem

15



needed to handle some bound restrictions in order to be solved in a real
domain. In our situation, the Trust Region (TR) optimisation algorithm
was used to do this. When comparing the two algorithms, TR performed
better and needed less iterations and function evaluations. Furthermore,
showed increased robustness to initial parameters.

Figure 4: An example of Gabor ϐitting on cross‑correlation histogram. (left) Curve
ϐitting using LM. (right) Curve ϐitting using TR. Taken from Ichim et al. 2019

4.3 Content evaluation of TFR using machine learning
With this study,we introduce amachine learning‑based empiricalmethod
that enables the identiϐication of the ”best” TFR based on the amount of
data they ”carry” regarding the experimental conditions. One of the in‑
put data sources used for the evaluation consisted in human EEG data
collected while performing a visual recognition task. Wemeasured maxi‑
mum accuracy and learning curves to determine which TFRworked best.
We found that the superlet transform (SLT) outperforms the other meth‑
ods ‑ it reaches saturation at 70% within 400 epochs; by comparison,
ChoiW, its closest rival, only catches up to it around epoch 900. Result
are shown in Figure 5.
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Figure 5: Classiϐication performance of four TFRs on human EEG data (a) EEG ex‑
perimental conditions ‑ seen (top), nothing (bottom); (b) Classiϐication accuracy of the
four TFRs (left) and of the shufϐled labels (control); (c) Learning curves of validation sets
in (b). Taken from Bârzan et al. 2022.

Figure6: Featureperturbationresults inTFRs. (a) Correlationmatrix for the features
extracted from each TFR method. (b) Feature importance metrics ‑ bottom (δPAcc),
difference in mean squared error (δMSE) (top). Taken from Bârzan et al. 2022.

This study also provides a brand‑new technique called joint feature
permutation, which makes it possible to determine which features of the
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TFRs are most crucial for classiϐication. Figure 6 displays the ϐindings of
this investigation.

4.4 Behavioural assessmentsof schizophrenia symptoma‑
tology in the murine model

Our work sought to identify behavioural abnormalities in mice that are
indicative of the negative‑cognitive symptoms of schizophrenia and to in‑
vestigate whether modulatory NMDAR agonists, such as D‑serine, may
be used to restore NMDAR function. In order to treat the negative and
cognitive symptoms of schizophrenia, for which traditional treatments
have failed, restoring NMDAR signaling through the administration of D‑
serine may pave the way for innovative therapeutic agents. The groups
of mice participating in this studywere NR2DKO‑2D‑E knock out (i.e., ho‑
mozygous mice that had mutation of the gene ‑ NMDA hypofunction) and
NR2DKO‑2D‑E wild type (i.e., homozygous mice that had no mutation ‑
control group).

Tail suspension test

Negative‑like symptoms in schizophreniapatients appear as a lackof drive,
social withdrawal, and anhedonia, as was discussed in the preceding sec‑
tion. Identifying the same symptoms in the murine model might be quite
difϐicult. To do this, we used the behavioural despair model known as the
Tail Suspension Test, which is one of the most popular paradigms for the
evaluation of depression symptomatology in mice (TST). The following
justiϐies the test’s use. Mice who are subjected to unavoidable short‑term
stress (such as tail suspension) gradually lose hope of escaping and adopt
an immobile stance (also known as TST immobility, which is comparable
to a depressive symptom in humans ‑ negative symptoms of schizophre‑
nia. We found that knock out mice presented higher immobility scores
when compared to the wild type ones suggesting a passive behaviour
which is comparable to the lack of motivation observed in schizophrenia
patients.
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Figure 7: Tail Suspension Test results. Subjects in the knock out group presented
continuous periods of immobility suggesting a phenotype.

Novel object recognition test

Workingmemorydeϐicits areoneof themain cognitive symptomsof schizophre‑
nia. We used the Novel Object Recognition Test to see if the experimental
group (knock‑out) had memory impairments (NORT) and if these mem‑
ory impairments could be ameliorated by administration of D‑serine.

NORT relies on the rodent’s natural propensity for exploration. Gen‑
erally, rodents frequently engage with unfamiliar objects more than they
do with well‑known ones. Therefore, NORT evaluates the animal’s capac‑
ity to identify a new object in a comfortable setting. Three phases make
up NORT: habituation, familiarization, and testing, which are carried out
over the course of three days. Behavoral animal tracking during the three
phases of NORT was achieved by implementing DeepLabCut which is an
open source software based on transfer learning with deep neural net‑
works.

We used NORT to evaluate memory deϐicits both before and after D‑
serine administration (1.2 mg/500 mL) in the water ad libitum. We used
a crossover study as the basis of our investigation, in which mice in each
group ϐirst received water and then D‑serine. Our results indicate that D‑
serine administration does not produced any memory improvements ad
seen in Figure 8. This result could be justiϐied by the fact that D‑serine ad‑
ministration was probably administered too late in the experiment (due
to SARS‑Cov‑2 pandemic).
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Figure 8: Novel object recognition test results. Time (in seconds) spent by knock out
and control group with novel and familiar object. The line in red separates the exper‑
imental timeline in two phases: (left) ‑ NORT before D‑serine administration. (right)
NORT after D‑serine administration.

4.5 Extracellular modulation of NMDARs by D‑serine
Different concentrations of D‑serine were supplied intracranially during
this part of the experiment, and in vivo electrophysiological experiments
were conducted in the twoexperimental groups (knockout andwild type).
A control condition, inwhichartiϐicial cerebrospinal ϐluid (aCSF)wasgiven
asopposed toD‑serine,was added to the experimental design to seewhether
D‑serine had any impact at a circuit level. The intracranial administration
of aCSF and D‑serine was therefore alternated while datasets were being
recorded.

In Figure 9, two animals from the two groups — wild type (i.e., non‑
mutant mice ‑ top scalograms) and knock out (i.e., mutant mice ‑ bot‑
tom scalograms) are used to compare the aCSF and D‑serine conditions.
Scalograms were produced using the superlet transform (SLT). The left
and right scalograms, respectively, demonstrate the effects of aCSF ver‑
sus Dserine treatment.
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Figure 9: Gamma power changes in aCSF versus D‑serine condition. Gamma power
is clearly stronger when D‑serine was administered in the knock out mouse.

Additionally, we sought to quantify D‑serine neuromodulatory impact
at a circuit level and its contribution to gamma oscillogenesis. We found
out that intracranial administration of D‑serine increased the gamma os‑
cillatory power in both groups. However, the knock out group appears
to be more affected by D‑serine than the wild type group, where only
marginal effects were seen. These ϐindings suggest that D‑serine restored
NMDARactivity in theknockout group leading to a robust neural synchro‑
nization within the gamma band.
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Figure 10: Gamma power changes after intracranial D‑serine administration,
speciϐied as percentual change in the gamma band power.

4.6 Multi‑sensory gamma therapy
WeusedGENUS treatment to achievegammaentrainment and then looked
into how different wavelengths of light stimulationmight affect the latter.
Our hypothesis is that different light wavelengths used in the ϐlicker stim‑
ulation could either increase or decrease the cortical neuronal entrain‑
ment. Thus,webuild a second stimulationpanel and compared the effects
of blue (460nm) versus white ϐlicker in the primary visual cortex of three
anaesthetized adult mice, designated M081, M082, and M083. The same
animal provided many recordings, which were interspersed (blue‑white‑
blue‑white). A 50% duty cycle ϐlicker stimulus was presented monocu‑
larly for 6 seconds at various frequencies (7, 10, 20, 30, 40, 50, and 60Hz).
To obtain the same brightness (i.e., 280 lux) for both colours, we varied
the driver voltage of each led panel. We found out that the magnitude of
gammaentrainment at 40Hzwas signiϐicantly higher in theblue condition
across three animals. Our results are shown in Figure 10 and indicate that
GENUS therapy could be improved by the use of the blue ϐlicker instead
of the traditional white one.
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Figure 11: Blue vs. white light responses during ϐlicker stimulation in three ani‑
mal subjects. Taken from Ichim et al. 2022

5 Conclusion
This thesis introduces several methods useful in investigating brain dy‑
namics and in particular fast cortical rhythms such as gammaoscillations.
It does so with a collection of ϐindings that have potential therapeutic im‑
plications in braindisorders including schizophrenia andAlzheimer’s dis‑
ease. Additionally, it introduces novel time‑frequency techniques such
as Superlet transform (SLT) and Fractional superlets (FSLT) that come in
handywhen investigating oscillatory activity in the brain, especially high‑
frequency oscillations such as gamma.

Our work reϐlects the highly multidisciplinary nature of neuroscience
and shows how gamma oscillations may be exploited effectively in a vari‑
ety of therapeutic and practical applications.
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