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1. Introduction

Machine learning (ML) techniques are fundamental to artiϐicial intelli‑
gence, ϐinding extensive use across commercial and research domains.
Thesemethods involve supplying algorithmswithdata and enabling them
to adapt their internal models to make relevant predictions or interpre‑
tations. ML algorithms essentially tackle complex optimization problems.
In neuroscience, we commonly deal with high‑dimensional datasets with
complex relationships between input features. In this chapter, we pro‑
vide an overview of various ML algorithm types and the data collection
methods used for this thesis.

1.1 Supervised and Unsupervised Learning

Machine learning algorithms can be categorized into two major groups
based on their data access: supervised and unsupervised methods. The
central distinction lies in thepresenceof target variables; supervised learn‑
ing uses them, while unsupervised learning does not.

Supervised learning involves algorithms that use input features and
corresponding target variables to adjust their models. In contrast, unsu‑
pervised algorithms only have access to input features and aim to group
similar objects together based on feature similarity.

Supervisedmethods are effectivewhen large labeleddatasets are avail‑
able, enablingpredictions fornewdata instances. Applications range from
facial recognition to speech‑to‑text algorithms. Unsupervised methods,
though less suited for applications, are valuable in research, handling sce‑
narios with limited labeled data, and have applications in neuroscience
and data labeling.
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1.1.1 Applications of Supervised ML
Supervised ML encompasses various algorithms where the underlying
principle involves iteratively reϐining model parameters based on input
data. Examples include linear regression, neural networks, and convolu‑
tional networks.

Fitting algorithms focus on optimizing parameters to minimize a cost
function (e.g., mean squared error) for accurate predictions. Multi‑layer
perceptrons (MLPs), or neural networks, extend this concept to nonlinear
functions, making them capable of arbitrary mappings, and thus, power‑
ful information detectors. Convolutional neural networks (CNNs) build
uponMLPs, excelling in imageprocessingbyapplyingweighted sumsover
input regions.

1.1.2 Applications of Unsupervised ML
Unsupervised learning aims to discover data clusters without target la‑
bels. This category includes density‑based and distance‑based clustering
algorithms, as well as Self‑Organizing Maps (SOMs).

Density‑based algorithms like DBSCAN analyze local point densities
to identify clusters and discard outliers, while distance‑based algorithms
likek‑means rely ondistancesbetweenpoints. SOMsmaphigh‑dimensional
data onto a lower‑dimensional space, preserving relational information.

These methods have strengths and weaknesses; density‑based algo‑
rithms excel at non‑gaussian clusters and outliers, while distance‑based
algorithms arenot capable of detectingnon‑linear separationboundaries,
and all are sensitive to dimensionality. SOMs offer insight into data rela‑
tionships, bridging clustering and visualization, but also rely on distance
as a measure of similarity.

1.2 Neurobiological Data Acquisition
The synergy betweenmachine learning and neurobiology holds immense
potential, particularly in dealing with the intricacies of high‑dimensional
data derived from neuroscientiϐic techniques. These methodologies offer
a pathway to extract meaningful insights from complex neural recordings
that traditional statistical approaches might struggle to unveil. Notably,
machine learning techniquesoperatedirectly ondata, unlikemodel‑based
traditional methods that impose predeϐined assumptions.
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To comprehend the efϐicacy of machine learning in neuroscience, we
must delve into the two main types of recording methods used in animal
studies. These methods, shaped by their distinct characteristics, present
challenges that make machine learning indispensable in their analysis.

1.2.1 Electrophysiological Recordings
Electrophysiological recordings provide valuable insights into neural dy‑
namics. Techniques like electroencephalography (EEG) and magnetoen‑
cephalography (MEG) capture neural activity externally, albeit with spa‑
tial distortions. In contrast, invasive recordings within animals’ brains,
such as patch‑clamp measurements, offer precise insights into individ‑
ual cell behavior. However, this method limits contextual understanding.
Extra‑cellular electrode arrays mitigate this by capturing neural signals
frommultiple neurons, though challenges remain in data interpretation.

Preprocessing electrophysiological data is crucial. Techniques like spike
sorting, aided by unsupervisedmachine learning, help identify individual
neuron activity. Machine learning tackles the daunting task of decipher‑
ing spiking patterns across high‑dimensional datasets. It contributes sig‑
niϐicantly to understanding the complex dynamics within neural circuits.

1.2.2 Calcium Imaging
Incorporating genetically engineered proteins into animal cells allows for
calcium imaging, offering dynamic insights into neural activity. Fluores‑
cencemicroscopy captures changes in ϐluorescence, revealing calcium in‑
ϐlux. Post‑acquisition, motion correction addresses movement‑induced
distortions. The selection of regions of interest (ROIs) and subsequent
data processing further reϐine the acquired signals. Machine learning as‑
sists in correcting ϐluorescence changes, extracting spike times, and ad‑
dressing the multidimensional nature of the data.

1.3 Thesis Objectives
This thesis seeks to harnessmachine learning to enhance neurobiological
data analysis. The primary goal is to innovate and adapt machine learn‑
ing methods for comprehensive neurobiological insights. Deep learning,
although often viewed as a ’black box,’ holds promise in this realm. The
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thesis aims to explore the use of deep learning while striving to unravel
its outcomes. The intention is to develop transparent and interpretable
strategies to bridge the gap between complex algorithmic outputs and
meaningful biological understanding. Ultimately, the thesis endeavors to
employ machine learning to address pertinent neuroscience queries and
surmount challenges related to model interpretability.

2. Implementation and Testing of a
Novel Activation Function

2.1 Introduction

Activation functions play a crucial role in shaping the behavior of neu‑
ral networks. This section introduces the signiϐicance of activation func‑
tions, their functioning, and their impact on network behavior. It then
outlines classical activation functions (sigmoid, hyperbolic tangent, recti‑
ϐied linear units (ReLU), softplus) and introduces a new activation func‑
tion, Soft++, highlighting its unique features. The chapter focuses on the
testing of this function on benchmark datasets and presents the corre‑
sponding results.

2.1.1 Activation Function Overview:

Neural networks apply activation functions to a weighted sum of inputs
before passing them on to the next layer. These functions greatly inϐlu‑
ence network behavior by affecting input transformations and error gra‑
dient propagation. Activation functionshaveevolved fromneuron‑inspired
models to designs with properties that facilitate faster and robust learn‑
ing. The choice of activation function signiϐicantly impacts network per‑
formance.
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Biologically Inspired Functions:

Early activation functions like sigmoid andhyperbolic tangentwere based
on neuron models. These functions have on and off states, continuous
domains, and suffer from the vanishing gradient problem. In deeper net‑
works, during the backpropagation step, applying the chain rule multiple
times results in the gradient becoming insigniϐicantly small at early lay‑
ers.

Rectiϐied Linear Units (ReLU) and Variants:

ReLU emerged as a solution to the vanishing gradient problem, with dis‑
tinct on and off states. It became the most widely used activation func‑
tion in deep networks. Variants like leaky ReLU (LReLU) and parametric
ReLU (PReLU) introduced slopes to address dyingunits, allowingnegative
gradients. Softplus, GELU, and Swish were created as smooth approxima‑
tions of ReLU. However, ReLU functions can cause units to become inac‑
tive or ”die.”

Exponential‑Linear Units (ELU):

ELUwas developed as an alternative to ReLU, attempting tomitigate its is‑
sues. It has continuity and exponential behavior for negative inputs. ELU
and scaled ELU (SELU) attempt to solve the vanishing gradient problem
but can still saturate in the negative domain.

2.2 Introducing and Testing Soft++:
Soft++ is designedas a continuousversionofPReLU. It combines the smooth‑
ness of the softplus function with a non‑zero negative gradient. Parame‑
ters in Soft++ control gradient saturation in both positive and negative
domains, enabling diverse shapes and behaviors. The chapter explores
various parameter settings and evaluates Soft++ on benchmark datasets.

2.2.1 Test Datasets:
Benchmarkdatasets, includingMNIST, CIFAR‑10, andCIFAR‑100, areused
to evaluate Soft++ performance. A synthetic dataset with low signal‑to‑
noise ratio andaneurobiological dataset frommousevisual cortex record‑
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ings are also tested. These datasets cover diverse scenarios to assess the
generalizability of Soft++.

2.2.2 Comparative Testing Procedure:

Different network architectures are used for each dataset, and multiple
runs assess sensitivity to initial conditions. Identical networks are em‑
ployed with varying activation functions. Soft++ parameters are tested
extensively to optimize performance.

2.3 Results:

Results show Soft++ performing exceptionally well. On MNIST, it reaches
comparable performance with modern functions. On CIFAR‑10, Soft++
outperforms all other functions in terms of convergence speed and ϐinal
performance. Soft++ also surpasses ELU and SELU on CIFAR‑100, show‑
casing improved performance with longer training.

2.4 Conclusions:

Soft++ offers beneϐits of other activation functions without their draw‑
backs. Its smooth gradient and non‑saturating nature make it a powerful
tool. Tests demonstrate its faster learning, better generalization, and po‑
tential to balance learning speed and power. Soft++ excels in scenarios
with limited samples and features. Its potential impact is underscored by
its success on neurobiological data. The results underscore its potential
as a valuable tool in neural network applications, particularly in scenarios

6



with low signal‑to‑noise ratio.

3. Gradient‑K Clustering: An Improved
K‑Means Algorithm

3.1 Introduction
In this chapter, we present a novel approach, known as the Gradient‑k al‑
gorithm, which addresses various limitations of the traditional k‑means
clustering algorithm. Our goal was to design an algorithm that can han‑
dle clusters with varying densities, shapes, and sizes by using additional
information derived from the gradient of the density function for more
accurate results.

Theprimary challengewithdistance‑basedalgorithms, suchask‑means,
is their reliance on distancemetrics as the sole similarity measure. These
algorithms tend to create linear separationbarriers betweenclusters, lead‑
ing to issues like the tessellation problem. Density‑based algorithms, on
the other hand, overcome this problem by designing non‑linear separa‑
tion boundaries and using local density thresholds to assign points to
clusters. We aimed to fuse the beneϐits of both approaches by using the
gradient of an approximate density function tomodify the distances used
in k‑means.

3.2 Methods

3.2.1 Gradient‑k Algorithm

The Gradient‑k algorithm, although generalizable to N dimensions, is dis‑
cussed here for two‑dimensional datasets or datasets reduced via Princi‑
pal Component Analysis (PCA). To avoid the curse of dimensionality, pa‑
rameters of this algorithm must be adapted for higher dimensions. The
algorithm is similar to k‑means with two key modiϐications.
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Discretization: The point space is divided into evenly spaced boxes
along each dimension. This transforms the problem into box space, offer‑
ing computational advantages and normalization. A density function is
created by counting the points in each box, providing a density distribu‑
tion.

Gradient Calculation: The density function’s gradient is computed af‑
ter applying a smoothing kernel. The gradient is utilized to adjust the
distance metric for clustering.

Gradient‑k starts by selecting K initial boxes using the K++ initializa‑
tion algorithm. The distance from each box to the cluster centers is cor‑
rected using a factor calculated from the angle between the density gradi‑
ent and the direction to the cluster center. The corrected distance guides
the assignment of boxes to clusters, and cluster centers are updated iter‑
atively until convergence.

3.2.2 Parameter Search

Optimizing algorithm parameters is crucial for fair comparisons between
clustering methods. We employed the Optuna framework to automati‑
cally sample parameter combinations. Parameters for Gradient‑k andDB‑
SCAN were optimized using Optuna’s TPE algorithm, ensuring balanced
comparisons with k‑means.

3.2.3 Comparative Analysis

Our comparative study involved classic k‑means, DBSCAN, andGradient‑k
algorithms on various benchmark and synthetic datasets. We conducted
1000 trials for each algorithm and dataset combination, evaluating it‑
eration count until convergence and clustering accuracy against ground
truth.

3.3 Results
In terms of accuracy and convergence, Gradient‑k consistently outper‑
formedormatched k‑means on all tested datasets. Additionally, Gradient‑
k exhibited better or comparable performance compared to DBSCAN in
most cases, except for the Aggregate dataset. Notably, Gradient‑k con‑
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verged faster than k‑means on the spike dataset. Signiϐicance testing sup‑
ported the observed differences between algorithms.

Qualitative analysis revealed thatGradient‑k’s clustering results closely
resembled ground truth, particularly when dealing with non‑linear and
non‑Gaussian clusters. Thealgorithmdemonstrated superiorperformance
ondatasetswith complex separation boundaries, where traditionalmeth‑
ods struggled.

3.4 Discussion

3.4.1 Advantages and Disadvantages

Gradient‑k addresses several k‑means limitations by leveraging density
gradient information. It overcomes issues like linear separation barriers
and the tessellation problem, thanks to its non‑linear separation bound‑
aries and handling of varying densities. The algorithm’s computational
complexity remains constant with respect to the number of input points
due to its operation in box space. Moreover, Gradient‑k often converges
as fast or faster than k‑means.

However, Gradient‑khasdrawbacks, including theneed for apre‑determined
number of clusters and parameter adjustments. Furthermore, its compu‑
tational complexity escalates exponentially with dataset dimensionality.

3.4.2 Further Research and Improvements

Future research should focus on extending Gradient‑k to higher dimen‑
sions and devising an automatic initialization process. This would elim‑
inate the need to specify the number of clusters and enhance algorithm
speed and accuracy. Additionally, exploring alternative ways to leverage
density information could provide new avenues for advanced clustering
techniques.

3.5 Conclusions

The Gradient‑k algorithm presents a promising solution to k‑means limi‑
tations, yielding accurate and efϐicient results. It bridges the gap between
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distance‑based and density‑based algorithms, offering advantages in var‑
ious scenarios. While challenges remain, such as high‑dimensional scala‑
bility and automated initialization, Gradient‑k showcases the potential of
density gradient‑based information in enhancing clustering algorithms.

4. Leveraging Irregular Sampling to
Capture Fast Brain Oscillations

4.1 Introduction
Calcium imaging has revolutionized research in biology, neuroscience,
and medicine by enabling simultaneous measurements of neuronal ac‑
tivity. However, its effectiveness is constrained by the protein’s behavior
and hardware limitations, leading to restricted observable frequencies.
We propose a solution using irregular (jittered) sampling to detect fast
brain activity like gamma oscillations (30‑150Hz) using GCaMP.

4.1.1 GCaMP Recording Constraints
GCaMP imaging offers advantages like tracking neuron identity and mea‑
suring multiple neuronal activations. Yet, limitations arise from slower
calcium signals and hardware constraints, leading to lower‑pass ϐiltered
signals. This restricts the observable bandwidth, currently around 30‑60
Hz. Hardware factors like sample scanning speed also impose limitations,
resulting in lower sampling rates (10‑20 Hz).

4.1.2 Jittered Sampling Across Fields
Jittered sampling involves capturing samples at random intervals, reϐin‑
ing the sampling grid and capturing oscillations at multiple phases. Cru‑
cially, this doesnot implydecreasing the inter‑sample interval belowwhat
would be possible with a given sampling rate, but sampling at longer in‑
tervals. While discussed in theory, practical applications have been lim‑
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ited. This method potentially circumvents bandwidth limitations by in‑
troducing randomness to the sampling process.

4.2 Methods
Synthetic datasets were generated to test irregular sampling’s effective‑
ness in extracting high‑frequency information from undersampled sig‑
nals. Signals included target and distractor oscillations along with noise.
We performed analyses using a simple sine functionmodel to predict tar‑
get oscillation amplitude, using optimization algorithms for ϐitting.

4.3 Results
Under regular sampling, aliases caused challenges in predicting target os‑
cillation amplitude, especially when distractor oscillations interfered. Ir‑
regular (jittered) sampling demonstrated signiϐicant improvements, en‑
abling accurate prediction of the target oscillation amplitude, even in the
presence of distractor frequencies.

4.4 Discussion
Our studydemonstrateshow incorporating randomdelaysbetween frames
through irregular sampling can enhance the extraction of high‑frequency
information fromGCaMPrecordings. Theapproach successfully predicted
oscillation amplitude, frequency, and timing. The main limitation of this
research is the fact that the tested signal is markedly different than real
brain data. Implementing irregular sampling in recording hardware and
applying thismethodology to real data could validate its potential for cap‑
turing fast brain activity.

4.5 Conclusion
Irregular sampling emerges as a promising technique to overcome limita‑
tions in capturing fast brain oscillations using calcium imaging. By intro‑
ducing a jittered sampling scheme, it becomes possible to accurately esti‑
mate high‑frequency oscillation properties that are typically challenging

11



to observe with traditional techniques. This novel approach holds poten‑
tial for advancing our understanding of brain activity dynamics and their
implications in various neurological disorders.

5. ML Applications in GcAMP Analysis
Pipeline

In this section, wepresent our collaborationwith Cold SpringHarbor Lab‑
oratory (CSHL) to analyze ϐluorescence data obtained frommouse brains
using two‑photonmicroscopy. The study aimed to understand the role of
feedback from the piriform cortex (PC) on the olfactory bulb (OB) activity
using a rule‑reversal go/no‑go task. We improved data preprocessing, de‑
veloped novel interpolationmethods, and appliedmachine learning tech‑
niques for analysis.

5.1 Data Preprocessing improvements

5.1.1 Data‑driven Interpolation

The recorded data consisted of GCaMP (calcium imaging) signals from
mice performing a rule‑reversal task. To process the data, we addressed
challenges inmotion correction and ROI signal extraction. We introduced
a novel empirically derived interpolation procedure that considered sig‑
nal characteristics and the length of missing data windows, resulting in
improved data retention compared to standard methods. Our method al‑
lowed for more lenient rejection criteria, retaining around twice as many
trials.

5.1.2 Bleaching Correction and Normalization

We redesigned the preprocessing pipeline to address bleaching correc‑
tion and normalization separately. Exponential detrending was used for
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bleaching correction, effectively removingbleaching effectswhilepreserv‑
ing signal integrity. We also implemented z‑scoring for normalization,
providing a more accurate representation of the signal’s underlying dy‑
namics.

5.2 Analyses and results

5.2.1 Kohonen Mapping

To explore the data, we appliedKohonenmapping (Self‑OrganizingMaps)
analysis, converting the data into a color representation. This technique
revealed intriguing patterns, including baseline state shifts, multiphasic
stimulus responses, and representational leakage across task blocks. We
introduced an auxiliary analysis to identify informative patterns and dis‑
tinguish them from non‑speciϐic ones.

5.2.2 MLP Analysis

Weemployedmulti‑layer perceptrons (MLPs) to classify stimulus and be‑
havioral characteristics across trials. MLPs were trained on segmented
data and used to forecast different features related to the task. We con‑
ducted control analyses to validate our results and assess the signiϐicance
of the obtained information. We also investigated how stimulus repre‑
sentations evolved across experimental blocks, analyzing same‑block and
across‑block scenarios.

5.2.3 MLP Results

The GFP control results demonstrate an increase in classiϐication perfor‑
mance of 30% compared to the baseline on average. Notably, the clas‑
siϐication accuracy enhancement was more pronounced for contingency,
instruction, and behavior classiϐications compared to stimulus classiϐica‑
tion. This outcome aligns with the fact that these variables are behav‑
iorally linked or correlated, indicating that the algorithm’s performance
mightbedrivenbynon‑neural activity‑related factors. These results serve
as a valuablebaseline for future analyses aiming to identify activity‑related
information.
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Contrastingly, theGCaMPdatasets exhibitedamore consistent increase
in performance across datasets and classiϐication tasks. Most datasets
showedperformance improvements exceeding50%compared to thebase‑
line for all classiϐication tasks post‑stimulus. Stimulus classiϐication per‑
formancedeclinedmore rapidly thanother types, reϐlectingpotential pro‑
cessing dynamics within the mouse olfactory bulb. These ϐindings con‑
ϐirm the presence of rich and complex feedback from the piriform cortex
to thebulb, conveying task‑relevant information evenabout non‑olfactory
stimuli.

The cross‑stimulus classiϐication analysis provided insights into task‑
related patterns. If piriform cortex feedback represents the given task (in‑
struction), one might expect some patterns to ϐlip across stimulus blocks.
This effect was observed across most datasets but not consistently, likely
due to variations in the measured boutons across sessions and the re‑
duced information available for this analysis. TheKohonenanalysis aligns
with these new insights, indicating that some stimulus‑related patterns
persist across blocks and take several trials to update to new rules. By
measuring post‑stimulus trajectories’ similarity to previous block mod‑
els, the evolving task parameter information’s encoding in a changing en‑
vironment was further elucidated.

5.2.4 Multi‑Dimensional Analyses
In addition to the machine learning techniques discussed earlier, high‑
dimensional trajectory analysis offers insights into data features. This
analysis treats activity combinations at each timepoint ashigh‑dimensional
points, forming trajectories over time. Symbolic entropy, angular coher‑
ence, and trajectory matching measures were developed to explore rela‑
tionships between experimental conditions.

The trajectory matching analysis employed distance metrics to com‑
paremodel trajectories for each condition against test trajectories. Angu‑
lar coherence further distinguished patterns from scaled versions, while
symbolic entropy measured system states exhibited across trials. These
analyses revealed that sound trials displayedgreater self‑consistency, odor
trajectories exhibited larger deviations upon stimulus onset, and entropy
increased for both stimuli. The results suggested that the observed in‑
crease in entropywas due to distance scaling rather than pattern changes.

Furthermore, a demixed PCA‑based approach provided insights into
the variance associated with task parameters across ROIs. This analy‑
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sis demonstrated higher task‑relevant information in odor blocks, con‑
sistency in stimulus‑related variance across blocks, and a substantial role
of condition‑independent components in explaining ROI variance.

5.3 Conclusions
This chapter showcased innovative machine learning methods applied to
ϐluorescence data analysis. Improvements in preprocessing techniques
and algorithm adaptation were discussed. Unsupervised (Kohonen map‑
ping) and supervised (MLP classiϐication) methods revealed top‑down
encoding of task variables and multi‑sensory information in the olfac‑
tory bulb. High‑dimensional statistical analyses elucidated trajectory dy‑
namics and encoding stability across different experimental conditions.
Finally, the dPCA approach provided information proϐiles for individual
ROIs, highlighting their associationswith taskvariables. Collectively, these
analyses provided strong evidence for task‑related top‑down encoding
and multi‑sensory information processing within the olfactory bulb.

6. Measuring Mutual Information
Across Brain Areas

Understanding the mechanisms underlying decision‑making and infor‑
mation ϐlow in the brain is crucial in neuroscience. In a collaborative ef‑
fort funded by the H2020 NEUROTWIN grant, the Mrsic‑Flogel Lab at the
Sainsburry Wellcome Centre, University College London, provided data
collected during experiments conducted to explore how information is
transmitted across different brain regions.

6.1 Experimental Setup
The experiments aimed to investigate decision‑making processes and in‑
formation transfer from sensory input areas (speciϐically visual) to mo‑
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tor planning and execution areas. Mice were exposed to drifting gratings
with varying speeds or temporal frequencies (TFs) selected from a nor‑
mal distribution. The mice were trained to detect an increase in the TF
distribution and respond by licking.

6.2 Data, Preprocessing, and Analysis
Data was collected from various cortical areas, including simultaneous
recordings fromprimaryvisual andmotor areasusingneuropixels probes.
The Kilosort algorithmwas employed to extract ϐiring times of individual
units . Activity vectors were generated by convolving a delta train with
these ϐiring times, with an exponential decay kernel.

The Kohonen Self‑Organizing Map (SOM) technique was used to visu‑
alize neuronpatterns around changeonset and false alarms. Amulti‑layer
perceptron (MLP) regression approach was developed to infer informa‑
tion transfer between areas. This algorithm acted as a mapping from in‑
put to output area, and the comparison between predictions and actual
data generated an error signal (MSE) for training.

6.3 Results
The Kohonen analysis revealed patterns related to change onset and false
alarms, showing similar activity when the animal was fooled. A commu‑
nication proϐile was established using MLP regression, highlighting pre‑
ferred communication lags and salient events. This proϐile contained sig‑
niϐicant information beyond population ϐiring rates.

6.4 Discussion
This analysis offered insights into common information shared by motor
and visual areas. However, caution is needed in interpreting the results.
The analysis did not provide directionality or complete mutual informa‑
tion understanding. Control analyses are required for stronger conclu‑
sions. The study also emphasized the ability of MLPs to map complex
spaces, highlighting the simplicity and potential online control applica‑
tions.
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6.4.1 Explainable AI

The ϐield of explainable AI was considered for better understanding ma‑
chine learning insights. Feature perturbation analysis can be employed,
allowing for precise dPCA‑like interpretations of importance. And deci‑
sions regarding which features to shufϐle and how to shufϐle them can al‑
low for the seperation of different encoding schemes (encoding in: pop‑
ulation ϐiring rate, temporal ϐluctuations in population ϐiring rate, etc.).
Suchmethodswereuseful for separating relevant features in input spaces.

6.5 Conclusions

This study demonstrated the utility of Kohonen SOM andMLP regression
for uncovering patterns and communication proϐiles in neural data. De‑
spite limitations, these methods provided valuable insights into informa‑
tion transfer. Further research involving explainable AI techniques could
enhance our understanding of complex brain processes.

7. Multiple Regression for Behavior
Analysis

In this chapter, we delve into the applications of multiple regression for
behavioral analysis. Regression involves predicting non‑categorical out‑
put variables from input data. While establishedmodels canbe employed,
weexplore theuseofMulti‑LayerPerceptrons (MLPs) as self‑trainedmod‑
els due to their universal approximation capabilities. Wepresent practical
examples to showcase their potential, acknowledging their strengths and
limitations. This analysis draws from data provided by Koen Vervaeke’s
teamat the Laboratory forNeural Computation, University of Oslo, as part
of the CIRCUITGENUS grant collaboration.
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7.1 Experimental Setup

Our experiment focuses on the retrosplenial cortex’s (RSC) response to
tactile cues during mouse locomotion on a simulated corridor. The goal
is to observe RSC activity with respect to the animal’s position and tactile
cues. By examining whether the RSC stores information about position
and responds to tactile input, we aim to uncover neural mechanisms re‑
lated to navigation and external input correction.

7.2 Data, Preprocessing, and Analysis

RSC activity was measured via wideϐield microscopy at a rate of 31Hz.
After motion correction and ROI selection, time traces were obtained for
each ROI. To maintain data integrity, we used raw data, as MLPs were
anticipated to extract the signal from noise.

We initially employed Kohonen Self‑Organizing Maps (SOM) to visu‑
alize neuron response patterns to stimuli. By assigning colors to ϐluores‑
cence patterns and synchronizing them with temporal events, we identi‑
ϐied patterns associated with circuit completion, reward administration,
andnewrunanticipation. Toanalyzeposition‑relatedpatterns,wealigned
patterns with animal position using interpolation, creating continuous
plots.

Furthermore, we utilized a three‑layer MLP with soft++ activation for
classiϐication and regression tasks. We attempted to separate stimulus
identity, stimulus occurrence number, and all task events (including re‑
ward).

7.3 Results

SOMvisualization revealed distinct patterns related to circuit completion,
reward, and anticipation of new runs. Spatial analysis uncovered events
triggering responses at speciϐic locations along the track. Classiϐication
tasks demonstrated the predictability of texture type, ϐirst vs. second en‑
counters, and location onset. Moreover, regression analysis accurately
decoded position with minimal error.
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7.4 Conclusions

Fromaneuroscienceperspective,we reafϐirm thatRSCencodesnavigation‑
related information. Future exploration involves analyzing regressionper‑
formance variations elicited by stimulus encounters, potentially identi‑
fying internal updates. The engineering viewpoint emphasizes the po‑
tential of relatively simple MLPs to decipher multi‑neuronal encoding of
continuous variables. Overall, this chapter showcases the utility of mul‑
tiple regression and MLPs in uncovering neural mechanisms underlying
behavior.

8. Conclusions

This thesis has achieved its primary goals by bridging the gap between
machine learning (ML) and neuroscience, yielding advancements in both
ϐields. Through innovative adaptations and improved algorithms, this
research demonstrates the potential to address complex questions and
challenges. The methods developed have signiϐicant implications for fu‑
ture scientiϐic inquiries.

The ϐirst studies included in the thesis focused on the development
of novel techniques, and the adaptation of existing ones, for use in neu‑
roscience. The ϐirst chapter discusses the design, implementation, and
assessment of a new activation function named Soft++. When incorpo‑
rated into multi‑layer perceptrons and convolutional neural networks,
this function outperformed modern counterparts, especially under low
signal‑to‑noise ratio conditions. Another noteworthy advancement is the
conceptionof a clustering algorithm, Gradient‑k. Unlike conventionalmeth‑
ods, this algorithm leverages an estimated density function to enhance
the accuracy and speed of the k‑means algorithm, even recognizing non‑
gaussian clusters of varied shapes. Furthermore, the research revisits the
Jittered sampling techniqueby applying it on signals resembling a calcium
imaging recording. This study suggests that a minor software modiϐica‑
tion in the recording process could lead to a twofold increase in the max‑
imummeasurable frequency, thereby expanding its applicability.
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The second half of the thesis is focused on applications of such tech‑
niques for answering neuroscience questions directly, as well as tackling
the black box problem. First, we tackle the question of the role of piriform
cortex feedback to the olfactory bulb. By amalgamatingmachine learning
algorithmswith high‑dimensional trajectory analyses, the research eluci‑
dates how this feedbackmultiplexes distinct task‑related variables. Then,
the interplay between sensory andmotor regionsduringdecision‑making
tasks was examined. Through the application of multi‑layer perceptron
regression, the communication dynamics between these areas were de‑
tailed, followed by an exploration of varying control analyses and their
potential data implications. Lastly, a preliminary analysis spotlighted the
retrosplenial cortex’s role in navigation, hinting at the boundaries of ma‑
chine learning analyses due to experimental design, especially when il‑
lustrating how the RSC processes spatial information.

In essence, this research underscores the vast possibility afforded by
applying machine learning methodologies on neuroscientiϐic inquiries,
paving theway for improved and novel tools and perspectives for upcom‑
ing research endeavors.
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