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1 Introduction
Across all of existence there is probably no self‑contained system, biological or otherwise, that
can rival the mammalian brain in complexity. Of all species on Earth, present or extinct, we
humans have made use of it the most. From crafting tools to build, hunt and forage, to inventing
language, society and then civilization, we became the dominant species on the planet mostly
due to this single organ. It would stand to reason that wewould know a lot about it, but alas this
is not the case ‑ extensive brain research only started in the mid 20th century.

A lot of work went into neuroscience in the last few decades. Here is a brief summary of
what we have uncovered thus far: we looked at brains under the microscope and found out
that they’re built out of two types of cells, neurons and glia, with the former having an active
role in brain function (cognition, memory etc) and the latter having a more supportive role. We
measured electrical activity at different levels of organization (from scalp electrodes to single
cell recordings) and learned that neurons conduct signals through electrical potentials ‑ waves
through the dendrites and impulses through the axons. We also found that neurons synchronize
their activity, giving rise to brainwaves.

We broke down the neurons’ biochemistry and found that they communicatewith each other
using synapses in which messenger molecules activate a target neuron via a lock‑key interac‑
tion. These messenger molecules have varied effects on the neurons they target and these ef‑
fects mainly depend on the kind of receptors the molecules bind to ‑ they can excite or inhibit a
target neuron or they can cause more subtle metabolic changes to occur inside it. The topmost
classiϐication of neurons is excitatory and inhibitory neurons, with an approximate 80‑20% dis‑
tribution.

With the invention ofmoremodern recording and imaging techniques, wemanaged to estab‑
lish that themammalian brain has a topological organization, in which different brain areas spe‑
cialize in different tasks. For example, the hypothalamus controls involuntary bodily functions
such as breathing and heartbeat, while the cortex is more preoccupied with more complex and
often voluntary behavior: cognition, memory, planning and so on. The cortex itself is thought of
as the main reason behind humans’ and other primates’ intellect.

An interesting topic of research, coincidentally the centerpiece of this thesis, is the domain
of neural oscillations. These rhythmic patterns occur in both cortical and subcortical areas and,
for particularly fast oscillations, are thought to arise due to interactions between excitatory and
inhibitory neurons, in which inhibition is rhythmically dialed up and down, providing excitatory
neurons with windows of opportunity in which their ϐiring can affect downstream neurons. Nu‑
merous studies have gone into establishing whether the oscillatory behavior of neural circuits
is a geniune mechanism governing brain function or if it is just an epiphenomenon, caused by a
more intricate mechanism.

The thesis summarized herein focuses on building methods to investigate oscillatory activ‑
ity in neural time series data, with an emphasis on a new time‑frequency analysis method called
Superlet Transform (SLT), based on the commonly used continuous wavelet transform (CWT).
This new technique effortlessly produces high time‑frequency resolution scalograms using an
information‑theoretic approach ofminimum‑mean cross‑entropy (geometric averaging) to com‑
bine multiple CWT scalograms into a single, high‑resolution representation.

The thesis also shows two different SLT applications in scenarios where neural oscillations
are concerned. First, a putative therapy for Alzheimer’s disease called GENUS (Gamma ENtrain‑
ment Using Sensory stimuli) is explored. First published by a team led by Dr. Li‑Huei Tsai, this
therapeutic approach focuses on inducing gamma oscillations (30‑80 Hz) using ϐlickering light
and claims that this gammaentrainment helps neurons and surrounding glial cells to break apart
and destroy the amyloid‑beta plaques that are the hallmark of this disease, while also cutting
back on the genetic expression (synthesis) of these plaques. Here, superlets are used to assess
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the properties of the gamma entrainment generated by the ϐlickering light in local ϐield poten‑
tials (LFPs, continuous time series signals) inmice, acquiredbyusing intracorticalmulti‑channel
silicon probes.

The second scenario involves gamma oscillations that are not entrained by an outside stim‑
ulus, but produced willingly by the subject. These rhythms are picked up using a non‑invasive
electroencephalography (EEG) setup and are used as control signals for a brain‑computer in‑
terface (BCI). Gamma oscillations were typically ignored for BCI applications using EEG, mainly
because these oscillations are low amplitude events with a typically low spatial footprint, mak‑
ing them very difϐicult to observe in EEG recordings where electrode sizes are large.

In what follows, the methods used in this thesis (the recording and analysis software, the
superlets) and the results that they produced will be summarized.

2 Methods
There are a number ofmethods discussed throughout the thesis and they should be conceptually
split in twocategories: methods thatwere available to the scientiϐic communitybefore this thesis
and methods that have been introduced with this thesis.

Filling the ranks of the ϐirst category are the usual suspects: the decades‑old techniques
for both intracortical recordings, using gold‑plated silicon probes physically piercing the cortex
through a craniotomy, and non‑invasive scalp recordings using EEG. Pair these signal acquisi‑
tion methods with signal processing techniques such as analog ϐiltering, ampliϐication, analog‑
to‑digital conversion and storage. For properly processing and analyzing neural time series data,
digital ϐiltering (such as IIR ϐiltering) is needed, as is time‑frequency spectral analysis using vari‑
ations of the Fourier andWavelet transforms. Cross‑correlation analysis and spectral coherence
analysis are also common, especially when dealing with local ϐield potentials, where interareal
communication through time or frequency correlations can be assessed. All these techniques
are part of the typical recording analysis workϐlow a neuroscientist would normally deal with,
using tools such as LabVIEW, MATLAB, Python.

The second category, which is explained in more detail, concerns the tools and methods
introduced in the thesis itself. Here we have a varied portfolio of items ranging from visual
stimulation devices for GENUS therapy, a data analysis framework developed in C# with a focus
on neural time‑series data, a novel time‑frequency spectral estimation algorithm (superlets)
and subsequent variations on it, recording software, stimulation software and novel machine
learning‑based analytical procedures for spike detection and power spectrum classiϐication.

2.1 Recording neural signals
Two methods for recording neural signals are discussed at length in the thesis, covering two
out of the three canonical scales of brain dynamics: mesoscale (small to medium sized neural
circuits) and macroscale (whole brain areas) activity. Both methods produce neural time‑series
data as their output, which canbe further processed andanalyzedusing typical signal processing
techniques such as digital ϐiltering and Fourier transforms, respectively.

2.1.1 Intracortical recordings

The best way of recordingmesoscale electrical activity is to cut away a portion of scalp and skull
above the area of interest (craiotomy), and insert some kind of recording device in the exposed
neural tissue. This recording device can take multiple forms, depending on experimental de‑
mands. In this thesis the acute silicon probes are used, where acute means that the experiment
has a short time frame, usually a few hours, before the probe is removed. The only exceptions
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to acute recordings are the cat recordings performed by Dr. Danko Nikolic at the Max Planck
Institute for Brain Research, and the macaque recordings performed by Prof. Dr. Wolf Singer’s
teamat the Ernst Strüngmann Institute, where chronicmicroelectrode arrayswere used instead,
where chronic means that the subjects ”wear” the recording device for a sizable period of time,
ϐixed to the skullbone with cement (the craniotomy is closed).

Generally speaking, most intracortical recording techniques have a decent number of chan‑
nels (e.g. 32 channels)with a sufϐicientlyhigh sampling rate (e.g. 32kSamples/sec). Theampliϐier‑
digitizer systems they use are quite complex and precise (resolution of at least 16 bits per sam‑
ple), have stringent grounding and shielding demands, and necessitate more involved synchro‑
nization setups in order to enable event signalling with high temporal precision.

2.1.2 Electroencephalography

EEG has the distinction of being one of the oldest recording techniques still ubiquitously used
today. The main gist of EEG is that large, synchronized neuron populations give rise to brain‑
waves of sufϐicient magnitude such that they can be recorded from outside the scalp, without
necessitating any invasive procedure to perform, making it feasible in clinically healthy human
subjects. The technique itself covers the whole scalp with equidistantly placed silver chloride
electrodes in large numbers (typically 64‑256 electrodes).

The drawbacks of EEGwhen compared to intracranial recordings (of any type) stem from the
fact that the skull and scalp form barriers between the source (neural tissue) and sensor. These
barriers have a very dramatic effect on the quality of the signal, acting as natural low‑pass ϐilters
in both temporal frequency and spatial frequency. This means that the signal will only reϐlect
low frequency activity with more ϐidelity and that the signal will appear smeared across multi‑
ple electrodes. More novel digital processing techniques, such as average referencing and the
Surface Laplacian, can be used to compensate for some of the losses induced by these barriers.

2.2 Neuroscience‑related software
A number of pieces of software were developed for use in the lab and have been thus included
in this thesis. The centerpiece of this batch of software is the TINS library (stylized as TINS).

2.2.1 The TINS neural data analysis framework

Development of an in‑house data management, processing and analysis toolkit begun as a train‑
ing exercise in implementing variousdigital signal processing techniques such asdigital ϐiltering,
short‑time Fourier transforms (STFT), discrete and continuous wavelet transforms (WT), spec‑
tral coherence, cross‑correlation and so on. As things kept being added to the toolkit, it started
to be less like a plug‑in for a greater development environment and more like its own thing ‑ a
framework, in the computer programming sense.

A lot of developmentwent into this budding framework,which is being continuously updated
with neuroscience‑related analytical procedure as the need arises. The main part of the frame‑
work, the core library (TINS.Core), contains various classes and routines used for organizing
sets of neural time‑series data (commonly stored as 32‑bit ϐloating point numbers in binary for‑
mat), parsing descriptor ϐiles, loading and saving data, bookkeeping events and organizing trial
structures. The core library also contains all of the usual preprocessing components needed for
dealing with continuous signals such as digital ϐilters (low‑pass, high‑pass, band‑pass and notch
inϐinite impulse response ϐilters) and resampling techniques (decimation and interpolation). A
wide array of analytical techniques are also incorporated: Fourier transforms (1D, 2D), STFTs,
coherence and phase‑locking analysis, wavelet and superlet analysis. It even has its own imple‑
mentation of a deep learning algorithm, amultilayer perceptron (MLP), that is fully conϐigurable
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and interfaces well with the rest of the framework. Dimensionality reduction algorithms, such
as principal component analysis (PCA) are also present.

In the data management perspective, the beating heart of this framework is a set of con‑
tainers based on matrices and vectors (Matrix<T>, where T can be any kind of object, including
numbers, strings or other matrices), with basic linear algebra procedures being constantly im‑
plemented and optimized.

Aside from the core library, which is meant to be cross‑platform using the .NET 6 runtime,
there is also aWindows‑only charting library (TINS.Visualization) that can render line graphs,
barplots and heatmaps, which makes creating ϐigures and saving them as PNG image ϐiles ex‑
tremely easy.

2.2.2 Recording and stimulation software

Building on top of the TINS framework are also some software that are routinely used in the lab
for visual stimulation and intracranial recording.

The ϐirst of these is the visual stimulation software. It started as an alternative to a Win‑
dows XP software that was previously used and had the job of rendering a series of frames to a
computer screen at a preset frame rate (60 Hz) and to use an external digital acquisition board
(NI‑DAQmx6636) to relay TTL signals to the ampliϐier‑digitizer system that is actually recording
the analog data from the animal subject. This way, the triggers ‑ events, such as trial start, stimu‑
lation start, trial end and so on ‑would be perfectly aligned to the recorded data, for experiments
in which the precise timing is critical.

Figure 1: The TINS Electrophysiology Terminal software, meant to be used in electrophysiology experiments.

Starting withWindows 7, Microsoft has deprecated the component that was doing the frame
rendering for this old software, DirectDraw, in favor of integrating it into its ever more popular
DirectX framework. The problem at the timewas that for the old software, whichwas developed
in Pascal, there was no easy way to interface with the DirectX libraries, so starting from scratch
in another language was warranted. Leveraging the fact that the TINS library already contained
the necessary code for reading and writing conϐiguration ϐiles and trial information (ETI) ϐiles,
and the fact that DirectX bindings for C# are common (libraries like Vortice, SharpDX and SlimDX
are the most popular), a re‑write of this software was possible.

The second, and more extensive, piece of software built to be used in the lab was the TINS
Electrophysiology Terminal, a fully‑sized digital acquisition software to replace an older, phased‑
out commercial program fromMultichannel Systems. The new acquisition softwarewas needed
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not only because the old one was deprecated, but also because with it we can fully control all as‑
pects of acquisition and stimulation, enabling us to build a closed‑loop system inwhich stimulus
can be driven by features of the signals in real time, a feat that was not possible using the older
software. Additional perks include the more modern user interface and the fact that this soft‑
ware can directly output the data formats we use in the lab and thus two‑step conversions of
large datasets are no longer needed.

2.3 Superlet Transform
The crux of this thesis revolves around a new time‑frequency analysis algorihm, the superlet
transform (SLT), and its applications in a few neuroscience scenarios. The base equation for the
SLT is the following:

SLTx,c1,of (f, t) =

[ of∏
i=1

Px(c1i, f, t)

] 1
of

(1)

where
• x is the input signal x(t),
• c1 is the number of cycles of the shortest wavelet,
• of is the order of the superlet at frequency f ,
• Px(c, f, t) is the power (2|A|2) of the responseRx, i.e. the convolution of the signal with the
wavelet:

Px(c, f, t) = 2|Rx(c, f, t)|2 = 2|(ψf,c ∗ x)(t)|2 (2)
where, ψf,c is the Morlet wavelet with central frequency f and number of cycles c.

The SLT is an extension of the CWT (see Equation 2), where the power values of the wavelet
responses ‑ the results of the convolution operations of the input signal with each wavelet ‑ are
geometrically combined to produce a single value per time‑frequency point. Each superlet is
a set of Morlet wavelets with the same center frequency but increasing number of cycles. The
order of the superlet deϐines how many wavelets it contains, while the base cycles parameter
deϐines how long the shortest wavelet in the set is.

Brieϐly, the superlets work by optimizing the resulting response to be as sharp as possible
in both time and frequency. The shortest wavelets favor high temporal resolution but poor fre‑
quency resolution, while the longest wavelets favor frequency resolution at the cost of tempo‑
ral resolution. The geometric averaging makes it so that the extremities (shortest and longest
wavelets) of the set effectively veto in time and frequency, essentially creating a ”bounding box”
around the time‑frequency point. An adaptive SLT (ASLT) was created to make the order of the
superlets scale with increase in frequency, sporting even better frequency resolution with in‑
creasing frequency, but at the cost of banding ‑ visually observable tearing of the scalogram ‑ at
the transitions between the integer valued orders.

A similarmethod to the SLT, but applied in 2D, is used in super‑resolution opticalmicroscopy,
in which the response of multiple illumination patterns are geometrically combined to obtain
an image resolution that is beyond what can be obtained with classical optical microscopy. It is
also important to point out thatwhile the SLT appears to defy the Heisenberg‑Gabor uncertainty
principle, it is actually not, because the principle applies to single measurements, not combined
measurements which is what these super‑resolution techniques do.

Not having yet a very rigorous mathematical deϐinition for the SLT, we sought to improve it
and generalize it. First we sought a fractional deϐinition for it, in which the order can be any
positive, non‑zero real number. This new fractional SLT, using weighted geometric averaging
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Figure 2: Examples of ASLT and fractional ASLT against the traditional STFT and CWT on EEG data with a rich
time‑frequency landscape. A.Mid‑sized window STFT showcasing the dilution phenomenon. B. CWT with a ϐixed
mid‑sized wavelet scale (5 cycles), showcasing the poor frequency resolution at higher frequencies (redundancy).
C.Adaptive SLT (orders 5 through 15) showing the good time‑frequency resolution and absence of dilution through
the whole frequency range, but also exhibiting the banding effect. D. Fractional adaptive SLT with the same order
range as in C, showcasing the elimination of the banding effect. Taken from Bârzan et al. 2021.

to include an extra wavelet with subunit weight, solves the banding phenomenon which was
inherent to the integer‑order ASLT. The equation of the fractional SLT then becomes:

FSLTx,c1,of (f, t) =

[
Px(c1(oi + 1), f, t)ϵ

oi∏
i=1

Px(c1i, f, t)

] 1
of

(3)

where, oi is the integer part of the real order of (i.e. oi = ϐloor(of )) and ϵ is the fractional part
(i.e. of − oi). ϵ is the weight of the extra wavelet.

Finally, applying the geometric mean on the polar notations of the complex responses, we
created a general equation for the SLT that works for complex inputs and outputs. Earlier, the
SLTwas only deϐined for real numbers ‑ amagnitude‑squared operation converted eachwavelet
response into spectral power before geometrically averaging. Thuswe nowhave a general equa‑
tion for the SLT, which we will display for illustrative purposes:

SLTx,c1,of (f, t) =

[
µx(c1(oi + 1), f, t)ϵ

oi∏
i=1

µx(c1i, f, t)

] 1
of

· exp
[
j arg

(
ϵθx(c1(oi + 1), f, t) +

∑oi
i=1 θx(c1i, f, t)

of

)] (4)

where, µx is the magnitude of the wavelet response (i.e. |Rx| from Equation 2) and θx is the
versor (phase vector of magnitude 1) of the wavelet response, given byRxµx

−1.
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Lastly, we are seeking a rigorous mathematical deϐinition for assessing the phase synchro‑
nization of two signals in this superlet framework, similarly to what is done when computing
magnitude‑squared coherence (MSC). With superlets, we gain the advantage that the analysis
window (i.e. the wavelets) is adapted to the frequency of the process being measured, as op‑
posed to using a single size for all frequencies, and the order and base cycles parameters are
more adequate because they refer to scale‑free processes which are common in neural data.
The work described in this thesis referring to superlet coherence, the current working name for
the new phase synchronization estimation method, is only in its preliminary stage.

2.4 ML classiϐication of time‑frequency spectra
To compare the newly developed superlets against the more traditional STFT, CWT and reduced
interference distributions (RIDs), such as the Choi‑Williams (CW) distribution, we needed away
to make the test as realistic as possible, using a few scenarios on real neural data. Multiple data
sources such as intracortical mouse recordings and human EEG recordings were used, having
multiple types of visual stimuli ‑ trial conditions. AnMLPwas then trained to classify the result‑
ing time‑frequency representations according to the trial conditions. Both maximum accuracy
and learning curves were measured.

Additionally, wedevised anew featureperturbationmethod, called joint feature permutation,
that can determinewhat features aremost relevant for classiϐication. This is done using a special
feature permutation scheme: the correlation matrix of the individual features is ϐirst computed.
Then, for each feature, a correlation threshold is set so that all other correlated features are
perturbed together with the feature. This is done in order to avoid the effect of perturbing
single features that are strongly correlated with other features, which would show no effect on
the predictive accuracy measurement of the classiϐier. The reason we do this is to avoid using
dimensionality reduction, which would eliminate the correspondence between the remaining
features and their position on the time‑frequency representation. In the end, this allows us to
build heatmaps that show uswhere the informational ”hotspots” are that contribute themost to
predictive accuracy and minimize mean squared error.

2.5 Spike detection with deep learning
Another aspect of electrophysiological neural data that often warrants a lot of analysis are the
neuronal action potentials, informally called spikes, electrical impulses that travel from the neu‑
ron’s body along the axon to the synapses, signalling the release of neurotransmitters. Spiking
activity is very informative in neuroscience, as the temporal widths of the spikes can inform as
to what kind of neuron is ϐiring it ‑ shorter spikes are usually from an inhibitory interneuron,
while larger spikes usually signal the presence of an excitatory piramidal cell.

The typical workϐlow in spike extraction is band‑pass ϐiltering the signal to eliminate low
frequency ϐluctuations (<300 Hz) and high frequency noise (usually >5000 Hz). This essentially
provides us with what is called multiunit activity (called this way because there are multiple
neurons ‑ units ‑ contributing spikes to the signal), a normally distributed signal with occasional
undershoots. These undershoots are the spikes. A detection algorithm is then run to obtain
the timestamps and waveforms of the individual spikes. Lastly, the spikes are sorted by their
characteristics, usually via a clustering algorithm, into single units.

This thesis introduces an algorithm that focuses exactly on the detection part. Usually, re‑
searchers employ a thresholding algorithm with a ϐixed threshold set at a multiple of the stan‑
dard deviation (SD) or interquartile interval (IQI) of the multiunit signal. This is very quick for
computers to process ‑ it can be done online while recording (the acquisition software in Figure
1 uses this method) ‑ but it also means that the amplitude distribution of the obtained spikes

7



will be cut at the threshold, with the implication that there are a lot of spikes that are close to
the threshold but are missed by this method.

In order to build a greedier spike detection algorithm, we started with the thresholding
method. An MLP classiϐier with two output nodes (spike and non‑spike) is trained on a dataset
formed of the threshold‑detected the spikes and an equal number of random bits of signal with
no spikes. The trained classiϐier is then ”slid” across themultiunit signal sample by sample, with
the spike class output probability at each point saved in a probability signal. The probability sig‑
nal is then thresholded and waveforms are cut from the corresponding region in the multiunit
signal.

2.6 Brain‑computer interface
Using knowledge gained from working with gamma oscillations, EEG and high‑resolution time‑
frequency analysis, we set out to develop an EEG‑based brain‑computer interface (BCI). Several
concepts were borrowed from earlier implementations of BCIs, such as motor imagery, which
implies the conceptualization ofmoving one’s limbs, creating the same patterns of activity in the
motor cortex as would the actual act of moving them.

Many kinds of motor imagery experiments exist in the literature using Mu rhythm desyn‑
chronization, that is, a drop in spectral power in the alpha band in themotor cortex. However, to
estimate power in the alpha band (8‑13 Hz) precisely, several cycles of alpha oscillations would
have to be measured, meaning a temporal integration window that would be hundreds of mil‑
liseconds long, thereby limiting the effective polling rate (i.e. number of commands that can be
issued per second) of the BCI. Therefore it was decided to go with a higher frequency range,
therefore shortening this temporal integration window.

There are numerous challenges in extracting high‑frequency activity (>30 Hz) from EEG sig‑
nals, as the scalp and skull act as low‑pass ϐilters in both space and frequency, meaning that the
localization of the high‑frequency source is diminished and its magnitude dampened. High‑pass
spatial ϐilters, such as the Surface Laplacian (SL) are great tools to mitigate these losses, as in
brain dynamics oscillation frequency and spatial footprint are inversely correlated ‑ the higher
the frequency, the smaller the source neuronal population. SL deals with this by performing a
distance‑weighted average of the signals of the neighbors of an electrode and subtracting that
average activity from the target electrode, thereby acting as a high‑pass ϐilter in the spatial do‑
main. Due to the inverse relationship between frequency and space, this also clears out the low
frequency activity in the electrodes. A number of other processing steps are performed to im‑
prove the quality of the signal.

Superlets are then used to compute the time‑frequency representations of the left and right
target electrodes (in real time), which would be situated directly above the hand area of the
motor cortex. Based on the activity of the left and right electrodes in the gamma range a decision
on whether to emit a command and the nature of that command is taken by the BCI.

3 Results
This thesis has produced a number of interesting results across all of its explored avenues ‑ sig‑
nal processing, GENUS therapy and BCI. These results have been published in various scientiϐic
journals and conferences.
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Figure 3: Spike amplitude distribution and spike waveform averages. A. Contrast between threshold‑based
(THR, bright red) andML‑assisted detection (ML, dark red). The green area represents spikes found only by theML
method. Average (red) and individual (gray) shapes of the threshold‑detected spikes (B.), ML‑detected spikes (C.)
and the set difference between the former two (D.). Taken from Bârzan et al. 2020.

3.1 ML‑facilitated spike detection
The ML approach to spike detection has produced very interesting results. Not only does it
detect >95% of the spikes detected by the traditional thresholding method (the waveforms of
the undetected 5% hardly look like spikes at all), but it also has a novelty rate ‑ percent of extra
spikes discovered with respect to the thresholding method ‑ of over 15%, meaning that at least
15% of all spikes are missed by the thresholding method.

Lowering the detection threshold helps up to a point at which the thresholds ”dig into” the
hash ‑ the richer part of the multiunit signal’s distribution, resulting in more spikes of lower
quality. The ML method overcomes this by looking at the shape of the impulse as well as its
amplitude. The result is a more natural‑looking spike amplitude distribution that tapers off
with increasing amplitude, instead of featuring a brick wall‑like cutoff (Figure 3). This is also
conϐirmed by the natural shape of the spikes in Figure 3D, showing the novel spikes exhibiting
the canonical spike features.

3.2 Superlet Transform
The SLT has captivated a lot of people since its introduction judging by citation metrics and
GitHub activity. At the time of writing, it has produced 3 scientiϐic papers from the authors,
papers that have drawn attention from the scientiϐic and engineering communities. In what
follows a number of interesting ϐindings will be highlighted.

3.2.1 Superlets allow for robust time‑frequency super‑resolution

The ϐirst striking aspects when comparing multiple time‑frequency representations obtained
with different methods (STFT spectrograms, CWT/SLT scalograms, reduced interference distri‑
butions and so on), is how concentrated the representations for the SLT are.

In one example, we generate a surrogate signal where 3 sets of sine wave with time‑ and
frequency neighbors and use it to compute the representations. What we observe in these rep‑
resentations is that the CWT has drastically poor frequency resolution and really good time res‑
olution, while the STFT suffers less from this problem but has worse temporal resolution. The
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SLT, with its geometric combination of wavelets optimized for different resolutions, gets rid of
this problem. Here, both time and frequency resolution are good. Figure 3 shows a comparison
between STFT, CWT and (F)ASLT, showcasing the latter’s improved time‑frequency resolution.

Another interesting aspect is how the SLT is able to extract oscillation packets buried deep
in brain noise. In one experiment, we added a few oscillatory packets to one trial out of 84 EEG
trials. STFT, MMCE, CWT and SLT were used to attempt to identify these packets and, out of all
these methods, the SLT was the most effective in extracting them.

3.2.2 Fractional superlets solve ASLT’s main drawback

Fractional SLTwas introduced in an early effort to generalize the formula for SLT for positive real
orders. It also helps by eliminating one of ASLT’s most important drawbacks from the original
Nature Communications paper: banding. This phenomenon appeared in ASLT due to the fact
that the order was deϐined as integers, and transitions between integer orders causes a tearing‑
like effect visible throughout the frequency range.

The most compelling ϐigures in the EUSIPCO paper on Fractional Superlets (Figure 2 being
one of them) show that the weighted geometric average implementation of FSLT (Equation 3)
show much more cursive transitions between the integer orders. Figure 2 shows a comparison
between STFT, CWT, ASLT and FASLT on EEG data with rich time‑frequency content. One can
easily see that the FASLT provides the best possible representation, for the reason that it is not
diluted (like the STFT), not redundant in the upper frequency range (like the CWT) and does not
suffer from banding (like the ASLT).

3.2.3 Superlets vs. competition ‑ real data

The most important comparison to make is between the SLT and other established methods in
how they perform on real neuroscience‑speciϐic data. This poses a problem, however, because
the ground truth is not known. This calls for an ML‑assisted algorithm that can estimate the
information content in these power spectra. A summary of this algorithm is discussed in the
methods section.

Figure4: Performanceevaluation results for theEEGdata. A.Twoconditionswereused: seen (top) andnothing
(bottom). B.Theperformance (accuracy)measures for the test (left group) and control (shufϐled labels, right group)
data sets. C.Learning curves for thedatasets inB. Thedata inBandC represents averages over100 splits. The errors
are represented in SEM. Taken from Bârzan et al. 2022.
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The methods section also introduces the newly developed joint feature permutation tech‑
nique. The results for the same EEG data as in Figure 4 are presented in Figure 5.

Figure 5: Joint feature permutation results. A. The correlation matrices computed for each data set. B. JFP
results for the difference inMSE (δMSE) and PAcc (−δPAcc, in%). Larger values in δMSE and−δPAcc represent
more important features. Taken from Bârzan et al. 2022.

3.2.4 Discussion on superlets

It is evident from the results in Figure 2 that the fractional SLT is a very powerful tool for work‑
ing with neural time series data (particularly EEG and LFPs), especially when high frequency
oscillations (i.e. gamma oscillations) are the focus. The adaptiveness of the SLT makes viewing
large frequency ranges an easy endeavor, due to the fact that it does not suffer from dilution or
redundancy. The SLT also has an edge when its information content is measured empirically via
machine learning, with its representations managing to capture more information from neural
data than other time‑frequency methods (Figures 2 and 4 are good examples on EEG data).

The popularity of superlets has also taken off since publishing the ϐirst superlet paper in
2021. Currently there are41papers citing the superlet papers, andpeople are frequentlymaking
inquiries to our lab for additional clariϐications and support with using superlets for their data.
The range of applications seems to be very large ‑ neuroscience (its intended audience), power
electronics, internal combustion engine design, ecoacoustics, radar, material science, cardiology,
civil engineering and even astrophysics papers are citing the papers at the time of writing. The
interaction with some of these laboratories also spurredmore research into the various aspects
of superlets, such as creation of a complex input‑real output FASLT for radar applications.

3.3 GENUS therapy
As previously discussed, superlets shine when looking at high‑frequency oscillations such as
gamma oscillations (30‑80 Hz). Therefore it makes practical sense to try out the superlets in
one of the most interesting therapeutic approaches involving gamma oscillations as treatment
for Alzheimer’s disease. Gamma ENtrainment Using sensory Stimuli (GENUS) is a novel ther‑
apeutic approach developed by a team of researchers led by Dr. Li‑Huei Tsai, which involves
administering ϐlickering stimulation in the form of light and sound, particularly at 40 Hz. This
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Figure 6: Still of a gaming session using the BCI featuring the thesis’ author. The depicted game, Audiosurf™, is
an action game featuring a spaceship on a track, where the user must avoid obstacles and collect blocks (points).
The cadence at which both arrive is given by the agressiveness of the rhythm of the music.

method has been shown to cause reduced genetic expression of amyloid‑β, while also causing
microglial phagocytosis of already present amyloid‑βplaques.

We created an experiment in which wemeasured the gamma entrainment elicited by stimu‑
lation with ϐlickering light, in keeping with the GENUS protocol. Our question revolved around
which color of light produces the most gamma entrainment. By trial and error we eliminated
the red and green colors and were left with only the white (used by Li‑Huei Tsai and her team in
the original GENUS papers) and blue light.

Results for 3 mice show that, at 40 Hz (the frequency speciϐied in the GENUS papers), blue
light produces signiϐicantlymoregammapower thanwhite light. While further analysis is needed
to quantify other parameters (such as the length of persistent entrainment), these results have
the potential to change how GENUS therapy is administered.

3.4 Real‑time brain computer interface
Lastly, we deal with the results obtained using our novel gamma‑based brain computer interface
described in the methods section. Inspired by alpha andmu rhythm‑basedmotor imagery BCIs,
this new implementation manages to do something that is quite rare in the motor imagery BCI
ϐield ‑ real time actuation. The Audiosurf™gaming session featured in Figure 6 is a good example
of the real time capabilites of the BCI. The game requires good coordination to navigate the track
and avoid the incoming obstacles.

Of course, we also needed to quantify the performance of the BCI from an information theo‑
retic viewpoint, in order to rank it against similar implementations. Therefore, weused Shannon
entropy to evaluate the information bandwidth of the BCI, i.e. the number of bits of information
it can convey per unit of time (minutes, seconds). We devised a special task for this, involving
producing a gamma power differential across the left and right motor cortices, as one would to
control the game, but instead this power differential is used to select from a range of ϐields (see
Figure 7). Each ϐield is a symbol (in the framework of Shannon entropy), and the task is to select
the indicated ϐield as quickly as possible. Information transfer rate (ITR) is measured using the
following formula:
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Figure 7: User interface for the bandwidth measurement task.

ITRBCI = r ·
(
log2N + P log2 P + (1− P ) log2

1− P

N − 1

)
(5)

where,
•N is the number of ϐields (symbols),
• P is the probability that the outcome (selected ϐield) is the desired one (highlighted ϐield)
when the command is computed,

• r is the polling rate of the BCI, measured in commands per second or Hz.
The ITR results for this ϐield selection task clock the BCI at around 88 bits/minute on average

(1.46 bits/second), with an average task performance of 90% (meaning the correct ϐield was
selected on 90% of the trials within the alloted time limit). However the highest measured ITR
was around 149.4 bits/minute (2.49 bits/second). The theoretical maximum for this particular
experiment with 5 ϐields (as shown in Figure 7) is 200 bits per minute (in each trial the ϐirst
command correctly selects the indicated ϐield).

These results place our BCI at a particular advantage, given that most motor imagery‑based
BCIs around 12 bits per minute. There are also visual‑based BCIs using steady‑state visually
evoked potentials (SSVEPs), which rely on stimuli with different ϐlickering frequencies on a com‑
puter screen, with the user picking a stimulus by focusing their gaze on them. The ϐlicker rate is
then detected by the BCI, making out which object was selected. The maximum bits/minute for
a SSVEP‑based BCI speller was 325 bits/minute (5.4 bits/second). Note, however, how similar
this BCI is to using an eye tracker, a device which measures the position of the pupils and can
compute where the user is looking on a computer monitor. In comparison, the gamma‑based
BCI presented in this thesis does not require the user have sight, given that decent feedback is
provided to the user through other sensory modalities.
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4 Conclusion
This thesis introduces anumberof techniques relating to the investigationof fast cortical rhythms
(with a particular focus on gammaoscillations) andusing them in therapeutical andpractical ap‑
plications. Of particular note is the creation of the Superlet Transform, a robust time‑frequency
analysis method with a focus on high resolution representations. This new technique has aided
us in the creation of the brain‑computer interface and also provided good insight into the pa‑
rameters of gamma entrainment in GENUS therapy. The SLT transcends the boundaries of this
thesis, however, with a fair number of researchers employing the technique for their own ends
in a wide swath of scientiϐic ϐields.

The investigation into GENUS therapy yielded a potentially signiϐicant result with regards to
how this therapy is applied,withblue light ϐlickering apparently being signiϐicantlymore capable
in producing gamma oscillations than the white light used in the original protocol.

Lastly, the real‑time BCI introduced in this thesis is also of high scientiϐic and engineering
value, due to the novelty factor of using gamma oscillations as control signals non‑invasively,
using EEG. The novelty lies not only in this peculiar control signal, but also in the responsiveness
we achieved with it, tested at a command rate of over 4 commands/second. The information
transfer rate (i.e. the bandwidth) of this BCI also places it in the top echelons, with its average
bandwidth strongly exceeding other BCIs of this type.

This thesis serves as proof of the highly interdisciplinary nature of neuroscience and is an
example of how, with the right tools, fundamental neuroscience concepts such as gamma oscil‑
lations can be exploited in various therapeutic and practical applications.
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