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1 Introduction

Over the last decades, machine learning and natural language processing experienced a
rapid growth. Their societal impact was also significant, changing many industries and
aspects of everyday life. Such developments inevitably put forward new theoretical and
practical challenges.

This thesis addresses some of these challenges. It presents four contributions to the
fields of natural language processing and machine learning. The problems considered in
the thesis are diverse, but we adopt a unified approach to them, based on two main tools:
convex optimization and learning theory. The datasets used in the experiments are from
different domains, but in the first two parts special emphasis is put on text data.

The first part contains a convex optimization formulation of the extractive text sum-
marization problem, and a simple and scalable algorithm to solve it. The optimization
program is constructed as a convex relaxation of an intuitive, but computationally hard
integer programming problem. The key idea is to replace the constraint on the number
of sentences in the summary with a convex surrogate. For approximately solving the pro-
gram we have designed a specific projected gradient descent algorithm and analyzed its
performance in terms of execution time and quality of the approximation.

Using the datasets DUC 2005 and Cornell Newsroom Summarization Dataset, we have
shown empirically that the algorithm can provide competitive results for single document
summarization and multi-document query-based summarization. On the Cornell News-
roomSummarizationDataset, which is used for single document sumamrization, it ranked
second among the unsupervised methods tested. For the more challenging task of multi-
document query-based summarization, the method was tested on the DUC 2005 Dataset.
Our algorithm surpassed the other reportedmethodswith respect to theROUGE-SU4met-
ric, and itwas at less than0.01 from the topperforming algorithmswith respect toROUGE-
1 and ROUGE-2 metrics.

The second part of the thesis is dedicated to a geometrically motivated classification
algorithm. The algorithm is a modification of the classical k-NN method, and it is based
on the idea of conformal metric transformation. More concretely, our approach relies on
replacing the constant metric with a variable and conformally equivalent one that is data
dependent, and therefore it is more informative. We define a family of conformal trans-
formations that, under some assumptions, induces distance functions that are efficiently
computable. Using the intuition that the distances between points near a class boundary
should be larger, a simple method for selecting a transformation is proposed.

We performed experiments on two datasets. The first set of experiments are with a
sentiment prediction dataset, and in this case ourmethod offers some improvements over
the standard k-NN algorithm. In the second empirical analysis, we apply the method to a
news taxonomy problem. In this case the results are mixed. We end the chapter with a
discussion of the advantages and weaknesses of the method, and propose a number of
possible improvements.

In the third part, wepropose a newneural network architecture and training algorithm
for generating interpretable models. The algorithm is derived using a learning bound for
predictors that are convex combinations of functions from simpler classes. More explicitly,
the hypothesis are polynomials over the input features, and are interpreted as convex
combinations of homogeneous polynomials. Training is done byminimizing a surrogate of

1



the learningbound, using an iterative twophases algorithm. Basically, in the first phase the
algorithm decides which monomials of higher degree should be added, and in the second
phase the coefficients are recomputed by solving a convex program.

The interpretability is achieved by transforming the input features such that they can
be viewed as reflecting the degree of truth of some proposition about the instance that is
being classified. In this paradigm, the output of the trained neural network can be viewed
as the truth value of compound proposition, and the network can be understood by hu-
mans.

We performed several experiments on binary classification datasets fromdifferent do-
mains. The experiments show that the algorithm compares favorable in terms of accuracy
and speed with other classification methods, including some new interpretable methods
like Neural Additive Models and CORELS. In addition, the resulting predictor can often be
understood and validated by a domain expert. The code is publicly available.

In the last part, we investigate the learnability of some hypothesis sets for regression
and binary classification defined by quantum circuits. The analysis is based on concepts
and results from quantum computing (Solovay–Kitaev theorem) and statistical learning
theory (Rademacher complexity and covering numbers). The obtained learning bounds
depend polynomially on the parameters defining the circuits set, namely, the number of
qubits and the number of 1 and 2 qubits gates used for their implementation. Our setting
is quite general: no realizability assumptions are made, and any 1 and 2 qubits gates are
allowed. Finally, we compare the current bounds with others found in the literature, and
discuss their implications for classification and regression on quantum data.

2 A Highly Scalable Method For Extractive Text Summa-
rization Using Convex Optimization

The task of creating a short, accurate and fluent summary starting froma text document or
a group of documents is called text summarization [31]. It is not too difficult for a human
to perform suchwork, but designing and implementing an artificial system to achieve this
task turned out to be challenging [26]. 1

Onemethod to generate a summary is by extracting and recombining themost relevant
parts from the original text or texts. This process is known as extractive summarization
and our work is focused on this problem. More concretely, the method described in this
chapter is based on minimizing a convex function subject to some constraints, and on the
properties of the l1 norm [28]. The properties of this norm are well-known and it has
many applications in signal processing (compressed sensing [7]) and statistics/machine
learning (LASSO regression [37]). Among the algorithms based on the l1 norm, the basis
pursuit is a mechanism for sparse signal reconstruction from incomplete measurements,
the LASSO is an automatic sparse feature selection method, while our algorithm can be
interpreted as a sparse relevant parts extraction mechanism.

The summarization procedure has 3 important steps (see Figure 1). In the first one
(preprocessing) anumerical representationof the text is obtainedusing theTF-IDFmethod.
The second step (processing) is themost important, and it consists in solving an optimiza-

1The chapter is based on the paper [29]
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tion problem. The step will be described in the next paragraphs. The last step (postpro-
cessing) consist in extracting and concatenating the most relevant sentences.
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Figure 1: Diagram of the proposed method [29].

In principle, we try to capture the essential insight that a proper summary should have
a numerical representation from which the vector associated with the entire text can be
accurately reconstructed. More specifically, the intuition behind our approach is to select
a maximum number of k sentences that best approximate the document, when some nu-
merical representation of the text is used (k is some arbitrary positive integer). This leads
as to the following integer programming problem:

P1:


min
a∈Rn

{∥∥MTa− d
∥∥2

2
− λbTa

}
ai ∈ {0, 1}, ∀i = 1, 2, . . . , n

∥a∥0 ≤ k.

(1)

Themathematical objects appearing in the equations have the followingmeaning. M ∈
Rn×m is a real valued matrix, where n represents the number of sentences and m repre-
sents the total number of distinct words. Each line of the matrix represents a sentence,
and each column is associated to a word. d is a vector with each element dj being the TF-
IDF value for the word j. Each element ai of the vector a indicates if the corresponding
sentence (the i-th sentence) should be integrated in the summary (ai = 1) or not (ai = 0).
The parameter k is the maximum number of sentences we want in the summary. The l0
pseudo-norm represents the number of non-zero elements of a vector (this is not a true
norm since it does not satisfy the triangle inequality). The real value λ is non-negative,
and together with vector b are user provided parameters. They encode the influence of
the ”side information” we have, namely the a priori knowledge about the importance of
different sentences.

By a reduction from the ”subset-sum” [36] problem, we can show that P1 is an NP-
hard problem. Therefore, in order to have a practical summarization technique, we need
to rely on approximations. To get an approximation, wemake use of the convex relaxation
method, and we arrive at the following convex program:

P2:


min
a∈Rn

{∥∥MTa− d
∥∥2

2
− λbTa

}
0 ≤ ai ≤ 1, ∀i = 1, 2, . . . , n

∥a∥1 ≤ k,

(2)

The program P2 can be solved efficiently. In order to have a highly scalable solution,
we further substitute the program by a simpler one (Paux, see Equation 3, in which C is a
positive constant), and for the new optimization problem we design a projected gradient
descent algorithm.
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Paux :

 min
a∈Rn

{∥∥MTa− d
∥∥2

2
− λbTa+ C ·max(0, ∥a∥1 − k)

}
0 ≤ ai ≤ 1, ∀i = 1, 2, . . . , n

(3)

In order to test our method, we employed a series of experiments on artificial and real
data. We first evaluated the quality of the approximation and the execution time for the
proposed relaxation method. We then proceed to evaluate the method on two different
tasks: single document summarization and query-basedmulti-document summarization.
The evaluation was based on the ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) tool, which became the de facto standard in this field [22].

For single document summarization, themost important experiments were donewith
the Cornell Newsroomdataset [16]. Themain result is that our systemhas a better perfor-
mance than most methods with a comparable complexity, but it is outperformed by some
methods that are much more complex and make use of supervised learning.

In the case of query-basedmulti-document summarization,wehave employed theDUC
2005 dataset [12]. Our method compares favorable with the other methods developed
initially for DUC 2005, and with some newer algorithms, like the one introduced in [23].
Note that the best resultswere obtainedwith rather computationally intensive algorithms
that relies on linguistic resources (like WordNet [24]).

In conclusion, the chapter presents a new algorithm for extractive text summariza-
tion based on some simple and intuitive ideas. Among the advantages of the presented
method, we can underline the extensibility and the possibility to use side information and
additional constraints. The method is fast enough to scale to large datasets and can be
used in multiple contexts, ranging from simple, single document summarization to multi-
document query-based summarization. The scalabilitywas achievedby convex relaxation,
and by designing a specific optimization algorithm for the problem at hand. Overall, the
method provides a good trade off between speed and accuracy in many contexts.

2.1 Conformal transformation of themetric for k-nearest neighbors
classification

The k-nearest neighbors (k-NN) algorithm is one of themost popular non-parametric clas-
sification algorithms. The main reasons are its simplicity, its ability to handle multi-class
problems without any extra effort, and the fact that it does not require training [15] [11]
[35]. However, in terms of accuracy it is usually surpassed by other methods, such as sup-
port vector machines (SVMs) , random forests and neural networks [35] [25] [18]. This
state of affairs triggered a lot of research on how to improve the k-NN algorithm. 2

In this chapterwe investigate somepotential improvements by analysing the geometry
of the space of data. More concretely, we try to adjust locally the underling metric3, such
that different classes become better separated, while keeping some of the structure of the
initial metric (e.g. the angles between vectors).

2The chapter is based on the paper [32]
3In this work we use the term ”metric” in the sens of differential geometry, therefore an equivalent for

”metric tensor”. The term is in general used also to denote a distance, but we avoid this use. The terms
”distance” or ”distance function” are preferred.
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While the idea is straight forward, obtaining an efficient algorithm that implements it
is not an easy task. To keep efficiency, we make some rather crude approximations, that
leads us to a new distance function. For each example in the training set, we compute
a local dilatation factor. The change in the geometry is a particular kind of conformal
transformation. We refer the reader to Figure 2 for a visual illustration of the idea.

Figure2: Adepiction of a data dependent conformal transformation ofR2. The points belong to two classes:
”+” and ”-”. The boundary between the two classes is the principal diagonal, and the original metric is
the Euclidean metric. The modified metric is generated by applying a local dilatation factor and the color
intensity indicates the strength of the dilatation: near the boundary the space is strongly dilated,while far
away the effect is weaker. In the white region the Euclidean metric is preserved. ([32] Copyright © 2020
IEEE)

The distance function induced by the new metric is used to replace the original dis-
tance (e.g. Euclidean distance) in the k-NN algorithm. The new method was tested on 2
datasets consisting of labeled text documents. Our experiments indicate that the method
can be used to gain some performance improvement, at least in some cases.

Our approach is illustrated inFigure3. The family of functionsΨ is chosen such that the
induced distance function is easy to compute. More concretely, we selectΨr : Rd → [1,∞)
defined by:

Ψr(x) =

{
c2i , if x ∈ Bi

r,
1 , otherwise,

(4)

where r ∈ R+ is some positive parameter, ci ∈ [1,∞), i = [n] are a collection of values
which will be computed from data, and Bi

r is the ball (with respect to the original metric
g) of radius r centered on some data point xi.

Using some geometric arguments, we can show that, under some technical conditions,
the new distance is given by:

dgc(x, xi) =
√

(x− xi)TG(x− xi) + r(ci − 1), (5)

whereG is the matrix associated to g.
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Figure 3: An overview of the proposed method. ([32] Copyright © 2020 IEEE)

Let us now fix some parameter ϵ > 0, representing the radius of the ball around each
training point in which we search for neighbors while computingΨr . In other words, for a
point xk to be considered a neighbor of xi, it must be true that dg(xi, xk) ≤ ϵ. For a training
point xi ∈ Sn , N i

t ∈ N represents the number of neighbors found around xi (note that it
is not related to k, the number of neighbors used for prediction) andN i

c is the number of
neighbors that have the same label as xi. The associated dilatation coefficient ci is given
by:

ci =
10

Ni
t+1

Ni
c+1

10
. (6)

Therefore we get a training algorithm that will provide the new distance (see Algo-
rithm 1).

We tested the algorithm on two datasets: a sentiment analysis dataset (Large Movie
Review Dataset [14] [2]), and a news categorisation dataset (the data consist of news
headlines and short descriptions from the year 2012 to 2018, obtained fromHuffPost [1]).

In the case of sentiment analysis, the new algorithm gives a significant advantage over
the standard k-NN (the error decreases by about 0.04-0.07, for all values of k). Taking into
account that, in contrast to the distance metric learning techniques [3], our modification
requires a relatively small computational overhead, the results provide a reason to further
pursue this research direction. However, in the case of news categorisation, the results
weremixed: for some values of k a small advantage is visible, but for other values of k, the
performance actually decreases slightly.

We can conclude that the proposed algorithm is very easy to implement, and it does
not have a long running time, but in terms of accuracy, the empirical findings are mixed,
inviting further investigations.
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Algorithm 1: k-CNN training algorithm ([32] Copyright © 2020 IEEE)

input : Data: Sn; Parameters: g, ϵ, r

for (xi, yi) ∈ Sn do
NNxi = FindNearestNeighbors(g, Sn, xi, ϵ);
Nt = |NNxi |;
Nc = 0;
for (xk, yk) ∈ NNxi do

if yi == yk then
Nc++;

end
end

ci =
10

Nt+1
Nc+1

10
;

end
dgc = GenerateTheNewDistance(g, {ci}, Sn, r);

output: dgc(·, ·) (the new distance)

3 Deep interpretable polynomial networks

Machine learning models are often treated as ”black boxes”, meaning that only the perfor-
mance of the predictor is relevant, while understanding the predictor is not an objective.
However, in some practical circumstances it is important to have amodel that humans can
understand [34, 13]. Some classification methods, like decision trees and Boolean formu-
las learned from data are inherently interpretable, but in many cases they do not perform
verywell [25, 35]. Another issue is that they have a performance-interpretability trade-off
that is hard to control: in order to gain accuracy, an increase in complexity is required, but
this in turn will increase the difficulty of exploring the learned model. This shows that it
is worth exploring new approaches in this direction. 4

In the present chapter we develop an algorithm that generates polynomial neural net-
works for binary classification that display a certain level of interpretability. The inter-
pretability is achieved by restricting our attention to the cases in which the features and
the labels can be understood to express the degree of truth of a proposition about the
instance that is being classified. With this assumption, the classifiers are interpreted as
compound propositions in a loosely defined ”real-valued logic”. The atomic propositions,
each one associated to a feature, are connected by ”logical connectives”, expressed by sim-
ple arithmetic operations.

The proposedmodels are polynomials over a subset of the real numbers, and the learn-
ing process is equivalent to finding the appropriate monomials and coefficients. There-
fore, we consider the following hypothesis set (dmax is the maximum degree):

4The content of the chapterwas submitted to bepublishedunder the title ”Deep interpretable polynomial
networks”
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Name Boolean operation Arithmetic operation(s)

Negation ¬x a(1− x)
Conjunction x ∧ y axy
Disjunction x ∨ y ax+ by

Table 1: The correspondence between Boolean logic operators and arithmetic operators used in this chap-
ter (x and y are either Boolean logical values or real values from the interval [0, 1], while a ∈ (0, 1] and
b ∈ (0, 1] are arbitrary parameters (a+ b ≤ 1 for disjunction)).

H = {h : [0, 1]2n → [0, 1] | h(x) =
∑dmax

d=1

∑
∥α∥1=d

wαx
α,∑

∥α∥1=d
wα = wd, w ≥ 0}.

(7)

For some technical reasons, it ismore convenient toworkwith the following slightly trans-
formed set of functions:

G ={g : [0, 1]2n → [−1, 1]|g(x) = 2h(x)− 1, h ∈ H}. (8)

The main problem that needs to be solved is that the hypothesis space grows expo-
nentially with the degree of the polynomials. In order to efficiently explore the hypothesis
set, we use the method of bounding the generalization error developed in [10]. In princi-
ple, the technique consists of finding an upper bound on the error by taking advantage of
some special structure of the predictors, and then minimizing this bound. In our case the
”special structure” is the fact that a polynomial of degree dmax can be written as a convex
combination of other polynomials, each one having only terms of degree exactly d, with
d ranging between 0 and dmax. Using this approach, we can prove the following learning
bound on the true risk (R[g]) in terms of the margin empirical risk (R̂ρ[g]):

Theorem 1. Let G be the class of functions defined by Equation (8), and fix ρ > 0. Then,
for any δ > 0, with probability at least 1− δ over the choice of a sample S of sizem drawn
i.i.d. according to some probability distribution P , the following inequality holds for all
g ∈ G:

R[g] ≤R̂ρ[g] +
8

ρ

dmax∑
d=1

wd

√
2d

m
log

e(2n+ d− 1)

d
+

2

ρ

√
log(dmax)

m
+

+

√{
4

ρ2
log

[
ρ2m

log(dmax)

]}
log(dmax)

m
+
log

(
2
δ

)
2m

.

The bound is the starting point for the algorithm design. In principle, we will like to
construct a procedure to minimize the bound. Since this is a relatively difficult task, we
relay on some simplifications. We remove some terms that are not very important, replace
the empirical risk by a convex surrogate, and introduce a new regularization/calibration
constant λ ≥ 0 and the new variables β, obtained by dividing the original weights (w’s) by
the margin (ρ).

In the end, we get the following optimization problem:
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min
β

c(β)

s.t. β ≥ 0,
(9)

where the objective function is

c(β) =
1

m

m∑
i=1

e1−2yi
∑dmax

d=0

∑nd
j=1 βdjxdji + λ

dmax∑
d=1

βd

√
d

m
log

e(2n+ d− 1)

d
, (10)

which is a convex function in β = (β01 β11 β12 ... βdmaxndmax
). In the above equation, βd =∑nd

j=1 βdj , yi is the label of the data point i (with the value -1 or 1), and xdji is the value of
the j-th monomial of degree d calculated with the features of the point i

This is a convex program, therefore for a fixed number of variables it can be solved
efficiently. Unfortunately in our case the dimension of β grows exponentially with dmax.
In order to solve this problem we adopt the strategy of solving progressively bigger pro-
grams.

The proposed training algorithm is iterative, and each iteration consists of two phases.
In the first phase we try to decide which new monomials to include, by computing some
partial derivatives of the current objective function. In the second phase, the coefficients
are recomputed by solving a simple convex program. The process continues until no fur-
ther benefits are obtained by adding new terms, or some resources threshold is reached
(see Algorithm 2).

We evaluated the algorithm on many datasets. The most relevant experiments were
performedon theCOMPASdataset [33],which contains the criminal history, jail andprison
time, demographics and COMPAS risk scores for defendants from Broward County from
2013 and 2014. The performance of the algorithm on this dataset was comparable, but
slightly worse than that of a new interpretable neural network, Neural Additive Models
(NAM) [4]. On the other hand, NAM has a much larger number of parameters and hy-
perparameters (see Table 2). On the same dataset, our algorithm outperformed Learn-
ing Certifiably Optimal Rule Lists (CORELS) [5], a recently proposed rules-based machine
learning method (see Table 3).

In conclusion, we presented a new algorithm for binary classification that can retain
someof the features of deep neural networks, such as expressiveness and scalability, while
generating models that can be understood. Our theoretical and empirical studies indicate
that the algorithm has good generalization capabilities, and in many practical situations
provides interpretable models.

3.1 Learning bounds for quantum circuits in the agnostic setting

Quantum circuit learning consist of learning a function from a class defined based on a
family of circuits with finite resources (number of qubits, number of 2-qubits gates, etc.).
In this chapter, the class of functions investigated is composed of the output probabilities
associated to a fixed computational basis state. This is a natural choice for doing classifi-
cation or regression on quantum data. 5

5The chapter is based on the paper [30]
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Algorithm 2: DIPNN training algorithm

input : Data: S; Parameters:λ,dmax,b

d = 1;
%Initialize the weights vector; β∗

1i are variables initialised
%with 0
β(1) = (β∗

01, β
∗
11, β

∗
12, ..., β

∗
1(2n), 0, ..., 0);

new_monomials = True;
while d ≤ dmax AND new_monomials do

%Phase1
%Update β(d) by solving the program
%with the current list of variables:

β(d) = min
β(d)

c(β(d))

s.t. β(d) ≥ 0

%Phase2
d++;
new_monomials = False;
%Update the list of variables:
for k = 1, ..., nd do

∂c(β(d))

∂βdk
= − 2

m

m∑
i=1

yixdkie
1−2yi

∑dmax
d=0

∑nd
j=1 βdjxdji

+ λ

√
d

m
log

e(2n+ d− 1)

d
;

if ∂c(β(d))
∂βdk

< 0 then

β
(d)
d,k = β∗

d,k;

new_monomials = True;

end
else

β
(d)
d,k = 0;

end
end

end
output: β(d)
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Neural network AUC

Standard
devia-
tion of
AUC

Running
time (s)

No. of
learned
param-
eters

No.
of hy-
perpa-
rame-
ters

Single Task NAM 0.737 0.010 65 >1000008
Multitask NAM 0.739 0.010 >65 >1000008
DIPNN (dmax = 1) 0.727 0.013 5 26 3
DIPNN (dmax = 2) 0.732 0.010 40 <76 3
DIPNN (dmax = 3) 0.732 0.010 91 <126 3
DIPNN (dmax = 4) 0.731 0.010 138 <176 3
DIPNN (dmax = 5) 0.731 0.010 188 <226 3
DIPNN (dmax = 6) 0.731 0.010 261 <276 3

Table 2: Comparison between NAM and DIPNN.

The learning bounds are quite simple and easy to interpret. They are expressed in
terms of basic quantum circuits parameters, namely, the number of qubits and the num-
ber of 2-qubits gates. The dependence on these parameters is polynomial, which implies
efficient statistical learnability [35].

The strategy forderiving thebounds is straightforward. The coveringnumber is bounded
using tools from quantum computing (e.g. Solovay–Kitaev Theorem [19]), then the result
is used to bound the Rademacher complexity. The basic set of functions is then used to
define hypothesis sets for regression and classification on quantum data. For some gen-
eral loss functions, bounds on the generalisation error are obtained in both cases using
the Rademacher complexity.

We assume that the data points are drawn independently from a fixed, but unknown
probabilitydistribution. In otherwords, an i.i.d. (”independent and identically distributed”)
dataset

S = {(|ϕi⟩ , yi)| |ϕi⟩ ∈ Cd, d ∈ N∗, yi ∈ [0, 1], i ∈ [n]} (11)

is available. Each input vector describes a pure state on q qubits (q ∈ N∗, d = 2q), while
the output is a positive unitary or subunitary real number.

Let γ ∈ N∗ be some fixed positive integer. We will assume that an input state un-
dergoes a transformation described by a quantum circuit acting on q qubits that can be
implemented using γ local 1-qubit and 2-qubit gates. Here by ”local” we mean that the
2-qubit gates act on consecutive qubits. The parameter γ will be called the circuit size.

The restriction to local gateswill simplify the analysis. Also, many quantum computing
algorithms are based on such gates [27]. However, at the price of a polynomial factor, any
non-local 2-qubits gate can be implemented using local gates.

Wealso assume that the gates arenot applied inparallel, that oneach layer of the circuit
only one gate is present. Notice that this assumption is merely formal, it does not restrict
the circuit class. Indeed, if in the layer i, we have k gates, we can design an equivalent
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Algorithm and hyperparam-
eters

Accuracy
Standard
deviation
of accuracy

Running
time (s)

CORELS (λ = 0.005,mc = 1) 0.654 0.009 9.37
CORELS (λ = 0.01,mc = 1) 0.660 0.016 0.08
CORELS (λ = 0.005,mc = 2) 0.660 0.009 171
CORELS (λ = 0.01,mc = 2) 0.656 0.011 197
CORELS (λ = 0.005,mc = 3) 0.664 0.014 150
CORELS (λ = 0.01,mc = 3) 0.664 0.017 162
CORELS (λ = 0.05,mc = 4) 0.664 0.017 208
CORELS (λ = 0.01,mc = 4) 0.664 0.017 214
DIPNN (dmax = 1) 0.673 0.008 8
DIPNN (dmax = 2) 0.676 0.010 95
DIPNN (dmax = 3) 0.674 0.011 139
DIPNN (dmax = 4) 0.675 0.011 192
DIPNN (dmax = 5) 0.675 0.010 244
DIPNN (dmax = 6) 0.674 0.010 552

Table 3: Comparison between CORELS and DIPNN.

circuit with k− 1 additional layers such that one gate remain on layer i and the other ones
are moved to the next layers, i + 1, i + 2, ..., i + k − 1 (the order is irrelevant) [27]. With
this assumption, the depth of the circuit will also be equal to γ.

Since any gate acting on a single qubit can be substituted trivially by one acting on
two qubits, we will consider for simplicity that all gates are 2-qubits gates (in our analysis
having only ”true” 2-qubits gates is the worst case).

The family of quantum circuits that we have just described will be parameterised by d
and γ, and we will call it Cd,γ . For an example of quantum circuit from this set, please see
Figure 4.

U1

· · ·U2

|ϕi⟩
· · · · · · · · · · · · · · · · · · · · ·

Ur

Figure 4: Example of quantum circuit from Cd,γ .

The effect of the quantum circuit on the input will be described by the following family
of unitary transformations:
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Ud,γ ={U ∈ Cd×d|U †U = UU † = Id,

U is implemented by a circuit from Cd,γ}.
(12)

To a classUd,γ we can assign the following set of real valued functions (which will also
serve as a hypothesis set for regression [35]):

Hd,γ = {h : Cd → [0, 1]|h(|ϕ⟩) = | ⟨0|⊗q U |ϕ⟩ |2, U ∈ Ud,γ}. (13)

In other words, each function give us the probability of observing the all-zeros output
(00..0), when a measurement in the computational basis is performed on the output of
a quantum circuit from the set Cd,γ . This is arguably the simplest way to define a real
function starting from a quantum circuit. Of course, there is nothing special about the
basis element |0⟩⊗q , any other element could be used.

The hypothesis class defined by Equation (13) can be used for regression on quantum
data. In standard regression, the output takes values in an arbitrary interval ofR [25], but
since any interval [a, b] ⊂ R can be mapped by a bijection to [0, 1], no loss of generality
occurs.

For binary classification a small modification is needed. To each function h ∈ Hd,γ , a
function gh : Cd → {−1, 1}, defined by

gh(|ϕ⟩) =

{
1, if h(|ϕ⟩)− 1

2
≥ 0;

−1, otherwise,
(14)

is assigned. The set of all functions gh will be called Gd,γ .
Let as also observe that in the case of binary classification the sample will have labels

from the set {−1, 1}.
To define the risk we need to use a loss function. For regression, a widely used loss

function is the Lp loss (p ∈ N∗), and the induced risk functionals are [25]:

Rp[h] = E
x∼D

[|h(x)− f(x)|p],

R̂p[h] =
1

n

n∑
i=1

|h(xi)− f(xi)|p,

for some fixed function f , a hypothesish, a probability distributionD, anda sample{x1, x2, ..., xn}.
We can define the risks for binary classification in a similar manner. Let us introduce

a cost function ψ : R → R+ such that ψ(x) ≥ 1x>0 (1P (x) is the indicator function of the
predicateP (x): for some x, it takes value 1 ifP (x) is true, and 0 otherwise). Some popular
choices are ψ(x) = ex, ψ(x) = log2(1 + ex), and ψ(x) = (1 + x)+ [6]. Using this function
we can define a surrogate empirical risk in the following way:

R̂ψ[h] =
1

n

n∑
i=1

ψ(−yih(xi)). (15)

The true risk for classification is defined as the probability of predicting the wrong
label, that is:
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Rc[h] = P (h(x) ̸= y). (16)

Now we can state the main results of this chapter. For regression, we can prove the
following theorem:

Theorem2. LetHd,γ be the hypothesis set defined in Equation (13), and p ≥ 1 an integer.
Then, for all h ∈ Hd,γ , and any δ > 0, with probability at least 1− δ over a sample S of size
n, the following bound on the generalization error under the Lp loss is true:

Rp[h]− R̂p[h] = O(

√
γlogc(γ)log(q)

n
+

√
log 1

δ

n
). (17)

In the case of binary classification, we get the following bound for the generalisation
error:

Theorem 3. Let ψ : R → R+ be a uniformly bounded and Lipschitz continuous cost
function such that ψ(x) ≥ 1x>0, and S an i.i.d. sample. Then, with probability at least
1− δ, the following bound is true for all g ∈ Gd,γ :

Rc[g]− R̂ψ[g] = O(

√
γlogc(γ)log(q)

n
+

√
log 1

δ

n
). (18)

In both cases, the constant c can be taken to be 1.
The proofs are based on Rademacher complexity [21, 20, 35], covering number [35],

[19] and theSolovay–Kitaev theorem[17]. They relayonupperboundson theRademacher
complexity in terms of the logarithm of the covering number. The logarithm of the cov-
ering number is upper bounded in two broad steps. First, we reduce to a finite family of
quantum circuits that approximate well enough, in a certain precise sense, the initial set
of quantum circuits. Solovay–Kitaev theorem is a key component in this step. Second, we
upper bound the size of this set using elementary combinatorics.

Themain conclusion of the chapter is the learnability of quantum circuits in the agnos-
tic case. As long as the circuit that needs to be learned can be represented by an equivalent
circuit with a finite number of gates on 2 qubits, the true risk will be close to the empiri-
cal risk with high probability, for a sample of polynomial size (in the number of gates and
qubits). In Table 4, a succinct comparison with some similar results is provided.
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4 Conclusions

In this work we made a number of theoretical, algorithmic and empirical contributions
to the fields of natural language processing and machine learning. The most significant
contributions are: a new convex optimization-based extractive summarization algorithm,
a geometrically -motivated version of the k-NN algorithm, a new interpretable polynomial
neural network, along with an algorithm to train it, and finally, a learning bound for quan-
tum circuits in the agnostic case.

In Chapter 2, we derived a new algorithm for extractive text summarization starting
from some basic properties that a good summary should have. Themain ingredients were
the convex relaxation procedure and the projected gradient descentmethod for construct-
ing optimization algorithms. Beside scalability, which was the main focus, the algorithm
has some other advantages, like its versatility, and the possibility to use side information
and additional constraints. Probably the main message of the chapter is that convex op-
timization, coupled with powerful numerical text representations, can be used to design
very fast and high quality text summarization algorithms.

Chapter 3 contains a detailed description of an algorithm which makes use of confor-
mal transformations in order to generate a better distance function for the k-NN classifi-
cationmethod. Themain achievement of the chapter was the extension of the research on
distance learning in a new nonparametric direction. The algorithm was tested on some
challenging datasets, with some positive outcomes. We hope the ideas from this chapter
can serve as a starting point for further research in this fascinating sub-field of machine
learning.

The next chapter (Chapter 4) describes a key contribution of the thesis, namely an in-
terpretable polynomial neural network. Deep neural networks have become some of the
most powerful machine learning methods, but they often lack interpretability. Therefore,
any effort to address this shortcoming is valuable. Our approach brings forth in this area a
number of new ideas, inspired or borrowed from theoretical breakthroughs (tight learn-
ing bounds for convex ensembles) and different sub-fields of artificial intelligence (e.g.
real-valued logic-based methods). We were able to derive a new learning bound for some
interesting classes of polynomial functions, and use it to design a new learning algorithm.
The experiments that we performed on many datasets show that the new algorithm be-
haves very well, outperforming or being close to many classic learning algorithms, and
also state-of-the-art interpretable models. The method can be extended and improved in
many ways.

In Chapter 5 we addressed a theoretical problem from the very new research area of
quantum circuit learning, namely the learnability of quantum circuits when the realizabil-
ity assumption does not hold. Using tools from quantum computing and learning theory,
we were able to derive meaningful bounds on the excess risk for binary classification and
regression. Such resultsmay have an impact on the design ofmachine learning algorithms
for quantum data. We compare the bounds with those published in the previous papers,
and we conclude that for the cases in which a comparison can be done, the new bounds
are tighter, being of type γlog(γ) 6 (but we must underline the fact that they were derived
in different settings).

Overall, the thesis shows the potential of old and new ideas and methods from convex

6γ is the number of gates with a fixed number of inputs.
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optimization and learning theory to constitute the foundation for principled algorithms
design and analysis, in order to address exciting problems in natural language processing
and data-driven prediction.
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