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Introduction 

 

Because humans are emotional beings, everything that enters in contact with us seems 
lifeless and cold if emotion is not present. As robots have a major impact on our everyday life 
there is a visible necessity in making them more human-like. As the field of voice recognition 
and speaker recognition reaches its peak, the next field that its naturally to be under research 
is the field of emotion recognition. This field is relatively new, and efforts are being made in 
order to raise the quality of the results and the available resources in this field. 
 As we know there are numerous countries that push the development of the field of 
emotion recognition. There are at the moment powerful emotion recognition algorithms 
based on image recognition that are used in the security field mainly in the USA and in China. 
The field of emotion recognition based on voice patterns is still underdeveloped but there are 
a lot of countries developing databases and searching for practical algorithms. 
 The title of the PhD thesis is Enhancing robots’ emotion recognition algorithms using 
speech-based signals. As we already mentioned the emotion plays an important aspect in how 
humans perceive different encounters with robots or things. There are categories of people 
who have limited interaction with other humans from safety, healthy or other reasons. For 
them an interaction with emotional robots can have a big impact on their mental health and 
have a swing in their current emotional state. The objective of this research is to create an 
emotional database in Romanian language in order to include people from a demographic 
area into the potential beneficiary of the emotional robots. Another objective is to find an 
algorithm that has good results on the already existent databases and to test the new database 
to see if it can be included with the others in the research part. 
 In order to achieve all our objectives, first of all we tried to get up to date to the all-new 
research that have been done in the field. Then we tried to see what emotions are, how they 
are produced, what are the emotion families and what are the emotion borders. In order to 
create our own emotion database, we needed to determine what emotions are usually present 
in our everyday life and what sentences can have different meanings when they are said 
under different emotions.  In order to create an algorithm that is performant in the emotional 
speech field we needed to research what feature extractors and what classifiers are used in 
this domain. We have picked one classifier and then tested different feature extractors to see 
the result obtained by those combinations using all the test databases and the new database 
that we have created. After we have eliminated the worst feature extractors, we have added 
more classifiers to see what combinations can give a powerful algorithm. In the end we have 
created a model that was tested on the freshly created database. 
 In the current stage of knowledge part of the thesis, the starting chapter is the “Robots” 
chapter, where the different commercial or service robots are briefed in order to see what we 
have to work with and what is the development directorate. The next chapter in the thesis is 
entitled “Emotional Databases” where we define what an emotional database is, what are the 
basic emotions, what are the contrasting basic emotions and what groups of emotions are 
there. In this chapter we also say what is the importance of creating a new database. In the 
next chapter we cover what databases are used as test in this work and how are they 
composed. Next, we talk about the different types of extracted characteristics and what 
classifiers are used. 
 In the personal contribution part of the thesis, first we talk about how we created the 
new database, what is the content of the database and some analysis done based on its 
content. The next chapter shows the implementation and the results obtained using only one 
selected classifier. The thesis continues with the implementation of the rest of the classifiers 
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and their results. After that we have a look on other results obtained in the same field and 
compare with the results obtained by our research. At the end we have our final conclusions 
based on the work done so far followed by the references list of figures and list of tables. 

 
Creation of the database 
 

The emotional database has been thought and designed in such a way that each sentence can 

have different meanings depending on the emotion conveyed by that sentence. The sentences are 

proposed to be understood and used by a service bot used in an indoor environment. The proposed 

sentences are as follows:  

 "The test results are in." 
 "I'm out of medication." 
 "The test is positive." 
 "The interpretation was wrong." 
 "It's grown a lot." 
 "It's gone down a lot." 
 "I closed the door on him." 
 "I turned off the light." 
 "I'm very well." 
 "The keys are in the door." 

 In order to better understand each sentence, we will look at the situations in which the 

sentences might be used and the different emotions with which they might be interpreted.  

The first sentence, "The test result is in," said in a happy tone, may indicate an escape from 

illness, an expected pregnancy test, or a positive test result. This answer may also come as a 

surprise to the speaker. The first sentence spoken in a neutral tone may indicate that the answer 

received is not a surprise, but rather comes as a validation to the speaker.  When this sentence is 

uttered with a sad emotion, it may mean the speaker has received bad news, such as the discovery or 

aggravation of an illness, or a negative result of an exam. By knowing these emotions and 

deciphering the hidden message, the service bot can have a broader understanding of the events that 

have occurred. The service bot can act with a much more expected and obvious response to humans. 

The second sentence," I have no more medication", received by the robot with a cheerful 

emotion, may support that the speaker has finished his prescribed medication which would also 

imply the end of his illness. In a neutral tone, the speaker may realise that the medication has run 

out, he still needs it, but it does not hinder his health if he goes for more later. On a sad emotion, the 

sentence reflects the speaker's urgent need for medication, which may even endanger his life. 

The third sentence, "The test is positive", can only be deciphered from the context or the 

emotion conveyed. On a positive emotion, the sentence conveys the speaker's happiness and that a 

positive event has happened in the speaker's life, for example a pregnancy test. The sentence on a 

neutral tone merely implies that the speaker expected this outcome. We can't concretely say that it is 

a positive or negative event in the speaker's life, from the context we can better figure out what it 

refers to. A negative emotion imprinted on this sentence can only result that the speaker has 

received bad news and that the event the speaker is referring to is a negative one, e.g. a SarsCov-2 

test. 

The fourth sentence, "The interpretation was wrong", leads us to think of a misdiagnosis made 

by one doctor, then having it refuted by another. The emotion of this sentence can totally change its 

meaning. If we have a happy emotion, the real diagnosis is one that helps the patient. It may be that 

he is completely healthy or just that the disease he has is not as serious as the disease he was 

originally diagnosed with. The emotion of sadness that monopolizes this sentence is the exact 
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opposite of the sentence with happy emotion. We can tell that the diagnosis given later is a severe 

one that may be life-threatening for the speaker or may need immediate help. 

The fifth sentence, "It has grown a lot", without context or emotion may be almost impossible 

for humans to decipher, resulting in robots trying to decipher this sentence being the equivalent of a 

random function result. In the absence of context we can rely on emotion. For an emotion of 

happiness, e.g. the speaker may rejoice at the growth in height of a child. For a neutral emotion, we 

cannot judge whether it is a happy or sad event in the speaker's life, we can only assume that the 

event is one that the speaker expected to happen. A negative emotion follows that in the speaker's 

life a negative, even expected event has occurred. For example, an increase in cholesterol at a test or 

an increase in a hematoma since the last check-up. 

The sixth sentence, "It has dropped a lot.", is extremely similar to its predecessor, this sentence 

having been introduced both to give the speaker more choices of expression and to introduce 

difficulty in recognising the correct sentence. 

The seventh sentence, "I shut the door on him.", introduces more colloquial language that the 

robot is likely to hear. This sentence may also activate the locomotor functions of the service robot, 

depending on the emotion conveyed. If the speaker conveys a positive emotion with this sentence, 

he/she wants to express that the door is closed and should stay that way. If the service robot detects 

a neutral emotion, the message it should receive is that the door is closed, but at any time it may 

receive a message to look for the keys or just keep the door closed. If the emotion conveyed by this 

message is a negative one, the robot should understand that the door is closed and should look for 

the keys if the door is locked and open it. 

The eighth sentence is similar to its predecessor, having similar meanings but different 

purposes. Here the service robot, can help turn the light bulb on or off in a particular room. This 

sentence is very useful for people with mobility disabilities. 

The ninth sentence, "I'm very well.", may expose one of the problems of the century, namely 

depression. If the service bot can intervene and distinguish depression at an early stage, it can help 

that person immeasurably. That person can take action in removing the depression until it is in an 

advanced form. If the emotion conveyed by this sentence is positive, it means that the paraverbal 

message is the same as the verbal message. If the sentence received by the robot has a neutral 

message, this does not mean that the speaker wants to deceive the robot with the message conveyed, 

the speaker may just be tired. However the robot should remain vigilant in following messages and 

emotions conveyed by the speaker. If the emotion conveyed is a negative one, the robot should 

understand that the speaker is not feeling well and should offer emotional comfort or call for help if 

there is a physical accident. 

The last sentence, "The keys are in the door", can have several paraverbal meanings, even if the 

verbal message is quite clear. If the emotion that accompanies the sentence is positive, it may have 

as a message the joy of finding the keys after a long search, or just the joy that those keys are where 

they should be. If the emotion is neutral, the message may be that the robot will bring those keys to 

the speaker, or just a message that the location of those keys is known. If the emotion is a negative 

one, the robot should remove those keys from the door and bring them to the speaker. 

These sentences can make robots come closer to helping humans and understand both the 

discrete language and the message conveyed paraverbally. With these 10 sentences we can give an 

example of the use of an emotional database and its importance. There is a possibility that a service 

bot that does not understand the paraverbal language may not be able to decode the transmitted 

message or even decode it wrongly and act in a wrong way. 

The database has a total of 4713,391 seconds or 78.5 minutes. It consists of 10 previously 

explained sentences, each sentence having 3 types of emotions explained. All 7 speakers repeated 

each sentence on each emotion 10 times. Each sentence on average is 2.244 seconds long. The 
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database has a total of 2100 sentences, of which 700 are on happy emotion, 700 have a neutral 

emotion, and 700 have a sad emotion. 

The database is structured as follows:  

• Each folder represents the class, and each of them is numbered as follows: 
"PersonName_pk_emotion", where k represents the number of the sentence and the 
emotion can be happy, neutral or sad. 

• Each class has 10 instances named as follows: "NamePerson_pk_emotion_n.wav", 
where n goes from 01 to 10 and represents the instance number.  

• P1 stands for "Test result came back.", P2 stands for "No more medicine.", P3 stands 
for "Test is positive.", P4 stands for "Interpretation was wrong.", P5 stands for 
"Increased a lot.", P6 stands for "Decreased a lot.", P7 stands for "Door is closed.", P8 
stands for "Light bulb is off.", P9 stands for "I am very well." And finally, P10 stands for 
"The keys are in the door.". 

• Persons 1, 3, 4 and 7 are male and persons 2, 5 and 6 are female. 

 
Fig. 4.1 shows the distribution of instances for 1 out of 210 classes. 

 

 
Fig. 4.1 – Distribution of records 

 

 

 

 

Class No. 
Person1 

[s] 
Person2 

[s] 
Person3 

[s] 
Person4 

[s] 
Person5 

[s] 
Person6 

[s] 
Person7 

[s] 
Total 

[s] 

P1 - f 

1 2.560 2.731 3.157 2.901 2.731 2.816 2.816 19.712 

2 2.731 2.987 3.243 3.157 2.731 3.072 2.560 20.481 

3 2.645 3.072 2.475 2.987 2.475 3.072 2.816 19.542 

4 2.475 2.987 2.731 3.157 2.560 2.901 2.901 19.712 

5 2.645 2.560 2.987 2.816 2.389 2.816 2.901 19.114 

6 2.645 3.413 2.816 2.901 2.475 2.901 2.731 19.882 
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7 2.645 2.816 3.072 2.731 2.389 3.243 2.645 19.541 

8 2.645 3.840 3.072 2.731 2.389 2.560 2.645 19.882 

9 2.645 2.901 2.645 2.645 2.475 2.731 2.645 18.687 

10 2.816 3.072 2.901 2.987 2.389 2.731 2.475 19.371 

P1 - n 

1 2.645 3.072 2.731 3.072 2.645 2.816 2.219 19.200 

2 2.560 3.328 3.157 3.072 2.219 2.731 2.560 19.627 

3 2.389 3.328 2.560 2.731 2.475 2.816 2.048 18.347 

4 2.475 3.413 2.901 2.987 2.389 2.475 2.304 18.944 

5 2.475 3.755 2.731 2.816 2.219 2.560 2.219 18.775 

6 2.475 3.413 2.987 2.901 2.389 2.816 2.219 19.200 

7 2.645 3.328 2.645 2.987 2.133 2.645 2.219 18.602 

8 2.475 3.072 2.901 2.731 2.219 2.987 2.304 18.689 

9 2.475 3.328 2.560 2.816 2.389 2.560 2.219 18.347 

10 2.731 3.072 2.731 2.731 2.304 2.560 2.219 18.348 

P1 - t 

1 3.072 3.413 2.987 2.645 2.560 2.816 2.645 20.138 

2 2.987 3.413 3.072 2.304 2.560 2.560 2.645 19.541 

3 3.072 3.243 2.987 2.389 2.475 2.645 2.560 19.371 

4 3.157 3.243 2.645 2.475 2.475 2.901 2.475 19.371 

5 3.157 3.328 2.560 2.475 2.560 2.560 2.389 19.029 

6 3.072 3.243 2.816 2.304 2.475 2.560 2.304 18.774 

7 3.072 3.072 2.645 2.389 2.304 2.645 2.475 18.602 

8 3.157 3.499 2.731 2.389 2.389 2.731 2.389 19.285 

9 3.072 3.157 2.731 2.304 2.645 2.560 2.645 19.114 

10 2.816 3.243 2.560 2.219 2.304 2.901 2.731 18.774 

P2 - f 

1 1.877 2.560 2.645 2.304 2.475 2.731 2.304 16.896 

2 2.219 2.731 2.475 2.475 2.133 2.560 2.389 16.982 

3 2.219 2.475 2.389 2.475 2.048 2.560 2.475 16.641 

4 2.304 2.560 2.560 2.560 1.963 2.389 2.219 16.555 

5 2.560 2.304 2.304 2.304 1.963 2.219 2.048 15.702 

6 2.048 3.072 2.560 2.389 2.133 2.304 2.560 17.066 

7 1.877 2.645 2.560 2.389 1.963 2.304 2.219 15.957 

8 2.133 2.645 2.219 2.645 2.133 2.304 2.389 16.468 

9 2.133 2.731 2.475 2.219 1.963 2.560 2.475 16.556 

10 2.304 2.901 2.219 2.816 2.048 2.645 2.219 17.152 

P2 - n 

1 2.133 2.645 2.731 2.304 2.219 2.731 1.707 16.470 

2 2.219 3.157 2.304 2.219 2.048 2.475 1.963 16.385 

3 2.048 2.731 2.560 2.304 1.963 2.219 1.707 15.532 

4 1.877 2.987 2.475 2.389 1.963 1.877 1.877 15.445 

5 2.219 2.987 2.475 2.475 2.048 2.219 1.877 16.300 

6 2.048 2.901 2.560 2.133 1.792 2.133 1.963 15.53 

7 2.560 2.901 2.475 2.389 1.877 2.219 1.963 16.384 

8 2.389 3.669 2.560 2.389 1.877 2.304 1.877 17.065 

9 1.877 2.304 2.475 2.219 2.048 2.219 1.707 14.849 

10 2.048 2.475 2.560 2.219 2.048 2.389 2.219 15.958 

P2 - t 

1 2.219 3.499 2.475 1.877 2.219 1.963 2.133 16.385 

2 2.304 2.731 2.560 2.219 2.304 2.389 2.219 16.726 

3 2.389 2.816 2.219 1.963 2.389 2.645 2.475 16.896 

4 2.133 3.328 2.304 2.048 2.219 2.389 2.048 16.469 

5 2.475 3.072 2.304 1.963 2.304 2.475 2.048 16.641 
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6 2.219 3.243 2.304 1.963 2.219 2.475 1.877 16.300 

7 2.304 2.901 2.219 2.133 2.133 2.475 2.389 16.554 

8 2.475 2.901 2.304 2.133 1.963 2.304 2.219 16.299 

9 2.389 2.816 2.219 2.133 2.048 2.389 2.133 16.127 

10 2.389 3.072 2.048 1.963 2.133 2.389 2.133 16.127 

P3 - f 

1 2.133 2.389 2.219 2.133 2.219 2.389 2.219 15.701 

2 2.475 2.901 2.389 2.304 2.304 2.304 2.133 16.810 

3 2.304 2.731 2.304 1.963 2.048 2.219 2.304 15.873 

4 2.304 2.731 2.304 2.304 2.048 2.389 2.219 16.299 

5 2.304 2.304 2.304 2.304 2.048 2.133 2.219 15.616 

6 1.963 2.816 2.901 2.048 2.133 2.389 2.304 16.554 

7 2.133 2.475 2.645 2.304 2.048 2.133 2.133 15.871 

8 2.048 3.243 2.475 2.048 2.048 2.048 2.048 15.958 

9 2.133 2.901 2.304 2.133 2.048 2.304 2.219 16.042 

10 2.304 2.901 2.389 1.963 2.048 2.133 2.133 15.871 

P3 - n 

1 1.792 2.560 2.389 3.072 2.133 2.475 2.048 16.469 

2 1.963 2.645 2.645 2.389 2.133 2.219 2.133 16.127 

3 1.877 2.389 2.645 2.048 1.877 2.133 2.475 15.444 

4 1.963 2.645 2.475 2.475 1.877 2.219 1.877 15.531 

5 1.963 2.901 2.645 2.048 1.877 2.219 1.707 15.360 

6 1.792 2.304 2.389 2.219 1.877 2.389 1.877 14.847 

7 1.963 2.645 2.475 2.304 1.707 2.133 1.707 14.934 

8 1.877 2.560 2.133 2.304 1.877 2.389 1.621 14.761 

9 1.963 2.560 2.219 2.133 1.877 2.304 1.707 14.763 

10 2.048 2.389 2.304 2.048 1.877 2.219 1.792 14.677 

P3 - t 

1 2.133 2.987 2.219 2.133 2.219 2.219 2.133 16.043 

2 2.304 3.072 2.389 2.133 2.048 2.560 2.389 16.895 

3 2.048 3.072 2.304 1.877 1.963 2.304 2.389 15.957 

4 2.304 3.072 2.219 1.877 2.048 2.389 2.389 16.298 

5 2.219 3.157 2.133 1.792 1.963 2.475 2.133 15.872 

6 2.219 2.987 2.304 1.792 2.133 2.475 1.963 15.873 

7 2.304 2.901 2.133 1.877 2.133 1.963 2.133 15.444 

8 2.133 3.157 2.389 1.963 2.048 2.219 1.877 15.786 

9 2.048 2.987 2.219 2.389 2.048 2.731 1.792 16.214 

10 2.048 2.816 2.304 2.048 1.963 2.304 1.963 15.446 

P4 - f 

1 2.475 2.731 2.731 2.219 2.389 2.304 2.816 17.665 

2 2.304 2.987 2.816 2.133 2.133 2.731 2.304 17.408 

3 2.475 3.243 2.816 2.133 2.133 2.304 2.304 17.408 

4 2.475 2.816 3.243 2.731 2.304 2.816 2.560 18.945 

5 2.475 3.499 3.157 2.048 2.219 2.816 2.219 18.433 

6 2.304 3.243 2.901 2.133 2.304 2.645 2.219 17.749 

7 2.304 2.816 2.731 1.963 2.048 2.475 2.048 16.385 

8 2.219 3.243 2.645 2.048 2.219 2.645 2.048 17.067 

9 2.475 2.816 2.901 2.133 2.304 2.645 2.133 17.407 

10 2.219 3.328 2.816 2.389 2.219 2.731 2.304 18.006 

P4 - n 

1 2.048 3.072 2.901 2.219 2.219 2.645 2.304 17.408 

2 2.389 2.731 2.816 2.645 2.304 2.731 2.048 17.664 

3 2.219 2.901 2.901 2.389 1.963 2.816 2.389 17.578 

4 2.389 2.901 2.645 2.304 2.133 2.901 2.304 17.577 
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5 2.560 2.901 2.816 2.389 2.133 2.389 2.133 17.321 

6 2.219 2.731 2.560 2.304 1.963 2.475 2.133 16.385 

7 2.219 2.987 2.645 2.219 1.877 2.731 1.877 16.555 

8 2.219 2.987 2.731 2.133 1.963 2.645 2.048 16.726 

9 2.133 3.243 2.816 2.389 2.304 2.816 1.877 17.578 

10 2.219 2.987 2.560 2.304 1.963 2.901 2.133 17.067 

P4 - t 

1 2.560 3.328 2.645 2.304 2.304 2.731 2.475 18.347 

2 2.475 3.328 2.731 2.304 2.560 2.731 2.560 18.689 

3 2.816 3.499 2.560 2.133 2.133 2.901 2.475 18.517 

4 2.731 3.243 2.731 1.963 2.048 2.987 2.475 18.178 

5 2.475 3.328 2.731 1.877 2.219 2.816 2.389 17.835 

6 2.475 3.328 2.560 2.048 2.219 2.645 2.304 17.579 

7 2.560 3.584 2.731 2.048 2.219 2.645 2.304 18.091 

8 2.645 3.072 2.645 1.877 2.219 2.901 2.389 17.748 

9 2.731 3.413 2.304 2.048 2.133 2.901 2.475 18.005 

10 2.560 3.413 2.645 1.877 2.304 2.816 2.219 17.834 

P5 - f 

1 2.048 2.645 2.048 2.219 1.877 2.219 2.219 15.275 

2 2.304 2.731 2.219 1.963 2.133 1.963 2.219 15.532 

3 2.133 2.560 2.219 2.048 2.219 2.133 2.219 15.531 

4 2.219 3.157 2.219 1.963 1.963 1.963 2.133 15.617 

5 2.133 2.816 2.475 1.963 2.133 2.048 2.304 15.872 

6 2.304 2.901 2.304 1.877 2.219 2.133 2.133 15.871 

7 2.219 3.157 2.304 2.048 2.133 2.133 2.048 16.042 

8 2.133 3.499 2.475 1.792 2.219 2.133 2.048 16.299 

9 2.304 3.328 2.475 1.877 2.048 2.048 1.792 15.872 

10 2.133 3.413 2.389 2.048 2.133 2.048 1.877 16.041 

P5 - n 

1 1.877 2.816 2.560 2.048 1.877 2.133 1.621 14.932 

2 1.792 2.560 2.560 2.048 1.877 2.304 1.621 14.762 

3 1.963 2.645 2.304 2.048 1.877 2.048 1.451 14.336 

4 1.877 2.560 2.389 1.877 1.707 2.133 1.365 13.908 

5 1.877 2.560 2.133 1.963 1.792 2.048 1.792 14.165 

6 2.048 2.560 2.219 1.707 1.963 2.304 1.536 14.337 

7 2.048 2.560 2.219 1.792 1.877 2.219 2.304 15.019 

8 1.707 2.731 2.560 1.792 1.877 2.219 1.621 14.507 

9 1.707 2.731 2.133 1.792 1.707 2.219 1.621 13.910 

10 1.963 2.901 2.219 1.877 1.792 2.389 1.707 14.848 

P5 - t 

1 2.133 3.072 2.645 2.475 2.048 2.389 2.560 17.322 

2 2.389 3.328 2.816 1.963 2.048 2.133 2.304 16.981 

3 2.475 3.072 2.389 2.048 2.048 2.304 2.560 16.896 

4 2.219 2.901 2.304 2.048 1.877 2.219 2.219 15.787 

5 2.304 2.816 2.219 1.877 1.963 2.389 2.048 15.616 

6 2.475 2.901 2.560 1.792 2.048 2.389 2.048 16.213 

7 2.389 3.157 2.389 1.792 2.048 2.475 2.048 16.298 

8 2.389 3.328 2.645 1.792 2.048 2.475 2.133 16.810 

9 2.389 3.072 2.560 1.963 1.963 2.304 2.048 16.299 

10 2.560 3.243 3.157 1.792 2.048 2.560 2.133 17.493 

P6 - f 

1 2.133 3.499 2.304 2.219 2.219 2.475 1.877 16.726 

2 2.389 3.499 2.219 2.133 2.219 2.048 1.877 16.384 

3 2.389 3.157 2.389 1.877 2.389 2.133 1.963 16.297 
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4 1.792 2.901 2.304 1.963 2.133 2.048 2.048 15.189 

5 2.133 3.243 2.133 1.792 2.048 2.048 2.048 15.445 

6 2.219 3.157 2.389 1.963 2.133 1.963 2.219 16.043 

7 2.133 3.243 2.133 2.133 2.219 1.963 1.877 15.701 

8 2.304 2.901 2.304 2.133 2.048 2.048 2.048 15.786 

9 2.133 3.328 2.219 2.048 2.219 2.133 2.133 16.213 

10 2.219 3.072 2.133 1.963 2.133 1.707 1.877 15.104 

P6 - n 

1 1.963 2.560 1.963 1.707 1.792 2.219 1.792 13.996 

2 1.877 2.901 2.645 2.133 1.792 2.048 2.133 15.529 

3 1.963 2.389 2.389 1.963 1.792 2.304 1.707 14.507 

4 1.792 2.645 2.475 1.707 1.877 2.475 1.877 14.848 

5 1.536 2.901 2.645 1.707 1.877 2.304 1.621 14.591 

6 1.621 2.645 2.731 1.707 1.963 2.133 1.792 14.592 

7 1.792 2.560 2.731 1.707 1.792 2.304 1.707 14.593 

8 1.792 2.645 2.304 1.707 1.877 2.389 1.792 14.506 

9 2.048 2.645 2.133 1.707 1.877 2.219 1.707 14.336 

10 1.792 2.816 2.304 2.048 1.792 2.475 1.621 14.848 

P6 - t 

1 2.560 3.243 2.560 1.963 2.048 2.304 2.475 17.153 

2 2.475 2.816 2.475 1.963 2.133 2.048 2.048 15.958 

3 2.219 3.243 2.645 1.963 1.877 2.389 2.048 16.384 

4 2.219 3.157 2.475 1.877 1.877 2.048 2.219 15.872 

5 2.389 3.157 2.475 1.792 1.877 2.304 2.219 16.213 

6 2.219 3.157 2.731 1.963 1.963 2.304 2.048 16.385 

7 2.389 3.157 2.560 2.048 1.877 2.389 2.048 16.468 

8 2.389 2.987 2.645 2.389 1.877 1.963 2.133 16.383 

9 2.731 3.243 2.731 1.707 1.792 2.560 2.304 17.068 

10 2.219 3.072 2.816 1.877 1.792 2.475 2.304 16.555 

P7 - f 

1 1.963 2.475 1.877 1.877 1.963 1.792 2.731 14.678 

2 2.048 2.645 1.792 1.792 2.048 2.133 1.536 13.994 

3 2.219 2.560 1.792 1.877 2.133 1.707 1.707 13.995 

4 2.304 2.645 2.048 1.707 1.963 1.621 1.365 13.653 

5 2.048 2.816 1.877 1.621 1.707 1.963 1.792 13.824 

6 1.963 2.901 1.792 1.707 1.963 1.877 1.792 13.995 

7 2.219 2.475 1.707 1.707 1.877 1.792 1.792 13.569 

8 2.048 3.328 1.707 2.219 1.621 1.963 2.219 15.105 

9 2.219 2.645 1.877 1.792 1.707 2.048 1.877 14.165 

10 2.219 2.816 1.877 1.707 1.792 2.304 1.792 14.507 

P7 - n 

1 1.621 2.304 2.048 1.621 1.792 1.792 1.451 12.629 

2 1.877 2.645 2.048 1.536 1.877 1.877 1.621 13.481 

3 1.792 2.645 2.133 1.877 1.707 1.792 1.451 13.397 

4 1.963 2.475 1.877 1.792 1.792 2.133 1.536 13.568 

5 1.707 2.816 1.877 1.877 1.707 1.963 1.792 13.739 

6 1.877 2.304 2.048 1.792 1.792 2.304 1.877 13.994 

7 1.877 2.645 2.048 1.621 1.792 2.048 1.707 13.738 

8 1.877 2.389 2.048 1.451 1.621 2.133 1.536 13.055 

9 2.048 2.389 2.048 1.707 1.707 2.219 1.365 13.483 

10 1.707 2.645 1.877 1.792 1.963 2.219 1.451 13.654 

P7 - t 
1 1.792 2.560 2.219 1.707 1.536 2.304 1.877 13.995 

2 1.877 2.987 2.389 1.792 1.707 2.219 1.877 14.848 
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3 1.792 2.901 2.219 1.451 1.707 2.133 2.133 14.336 

4 2.133 3.243 2.048 1.707 1.707 1.963 1.963 14.764 

5 1.877 2.731 2.389 1.451 1.792 1.963 2.048 14.251 

6 2.219 2.560 2.048 1.536 1.707 2.048 1.792 13.910 

7 2.389 2.731 2.304 1.365 1.621 1.963 1.963 14.336 

8 2.133 2.987 2.475 1.707 1.877 2.048 1.707 14.934 

9 2.048 2.645 2.219 1.877 1.877 1.963 1.707 14.336 

10 1.963 2.645 2.560 1.707 1.707 2.048 1.707 14.337 

P8 - f 

1 2.133 2.389 2.048 1.792 1.707 1.963 2.048 14.080 

2 1.963 2.389 2.048 1.877 1.792 1.963 1.963 13.995 

3 1.707 2.645 1.963 1.621 1.536 1.877 1.707 13.056 

4 2.048 2.560 1.963 1.877 1.792 1.451 1.792 13.483 

5 1.707 2.219 2.048 2.048 1.707 1.621 1.877 13.227 

6 1.707 2.475 1.792 2.048 1.707 1.707 2.048 13.484 

7 1.877 2.389 1.792 1.621 1.792 1.707 1.877 13.055 

8 1.707 2.389 1.963 1.621 1.621 1.963 1.877 13.141 

9 1.963 2.475 2.219 1.451 1.707 1.963 1.792 13.57 

10 1.877 2.816 2.219 1.536 1.792 1.963 1.621 13.824 

P8 - n 

1 1.792 2.475 2.048 1.621 1.877 1.963 1.707 13.483 

2 1.707 2.389 2.219 1.536 1.707 1.707 1.451 12.716 

3 1.621 2.560 2.133 1.621 1.877 1.963 1.451 13.226 

4 1.792 2.560 2.048 1.621 1.707 2.219 1.365 13.312 

5 1.877 2.475 2.048 1.621 1.536 2.048 1.536 13.141 

6 1.877 2.475 2.219 1.707 1.536 2.048 1.792 13.654 

7 1.536 2.645 1.792 1.707 1.707 1.963 1.536 12.886 

8 1.707 2.560 2.048 1.536 1.792 2.048 1.621 13.312 

9 1.621 2.645 2.133 1.621 1.536 2.475 1.621 13.652 

10 1.792 2.645 1.792 1.707 1.707 2.133 1.451 13.227 

P8 - t 

1 1.963 2.816 2.389 2.133 1.877 2.133 1.621 14.932 

2 2.048 2.901 2.389 1.707 1.792 2.133 1.536 14.506 

3 2.133 2.987 2.475 1.792 1.792 2.048 1.877 15.104 

4 2.219 2.987 2.219 1.621 1.707 1.963 1.877 14.593 

5 1.963 2.987 2.560 1.792 1.877 2.133 1.792 15.104 

6 1.877 2.816 2.475 1.707 1.792 2.219 1.792 14.678 

7 1.963 2.987 2.475 1.877 1.963 2.304 1.451 15.02 

8 2.048 2.901 2.560 1.536 1.963 2.219 1.792 15.019 

9 2.048 2.987 2.645 1.707 1.963 2.048 1.707 15.105 

10 2.048 2.987 2.389 1.621 1.707 1.877 1.792 14.421 

P9 - f 

1 1.451 2.560 1.792 1.621 1.621 1.621 2.048 12.714 

2 2.048 2.645 1.963 1.792 1.707 1.621 1.963 13.739 

3 1.792 2.304 1.792 1.707 1.792 1.792 1.707 12.886 

4 1.451 2.133 1.792 2.048 1.792 1.877 1.621 12.714 

5 2.048 2.219 1.621 1.877 1.707 1.963 1.877 13.312 

6 2.048 2.389 1.877 1.792 1.621 2.048 1.963 13.738 

7 2.048 2.389 1.792 1.792 1.792 2.133 1.792 13.738 

8 1.536 2.389 1.877 1.792 1.707 1.536 2.048 12.885 

9 1.877 2.389 1.963 1.707 1.451 1.877 1.963 13.227 

10 1.707 2.560 1.877 1.536 1.707 1.707 2.048 13.142 

P9 - n 1 1.707 2.645 1.877 1.536 1.707 2.048 1.621 13.141 
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2 1.707 2.731 1.963 1.621 1.707 2.048 1.451 13.228 

3 1.621 2.475 1.877 1.536 1.877 1.536 1.536 12.458 

4 1.621 2.560 1.792 2.048 1.707 1.621 1.536 12.885 

5 1.536 2.304 1.792 1.621 1.707 1.963 1.707 12.630 

6 1.877 2.389 1.877 2.133 1.707 1.707 2.133 13.823 

7 1.792 2.475 1.792 1.621 1.877 1.963 1.792 13.312 

8 1.451 2.560 1.792 1.536 2.133 1.877 1.707 13.056 

9 1.792 2.731 1.877 1.365 1.451 1.963 1.621 12.800 

10 1.707 2.731 1.792 1.792 1.536 1.877 1.707 13.142 

P9 - t 

1 1.963 2.901 2.816 1.963 1.792 1.536 1.792 14.763 

2 2.389 3.328 2.901 1.792 1.792 1.707 1.707 15.616 

3 2.133 2.645 2.816 2.133 1.707 1.621 1.621 14.676 

4 1.963 2.560 2.645 1.707 1.877 1.707 2.048 14.507 

5 1.963 2.560 2.475 1.536 1.707 2.048 1.792 14.081 

6 2.048 2.901 2.901 1.621 1.621 1.963 1.792 14.847 

7 1.877 2.731 2.645 1.451 1.621 1.877 2.048 14.25 

8 1.877 2.987 2.475 1.536 1.621 1.536 1.792 13.824 

9 1.792 2.987 2.560 1.621 1.621 2.304 1.963 14.848 

10 2.133 3.072 2.901 1.707 1.707 2.048 1.792 15.360 

P10 - f 

1 2.048 2.816 2.048 2.304 2.133 2.048 1.963 15.360 

2 2.133 2.560 2.133 1.963 2.133 2.133 2.048 15.103 

3 2.304 2.389 1.963 2.389 2.048 2.133 1.877 15.103 

4 2.219 2.731 1.963 2.475 1.963 2.048 1.877 15.276 

5 2.048 2.645 1.792 2.475 1.877 1.792 2.048 14.677 

6 2.475 2.816 1.877 2.219 1.792 2.048 1.877 15.104 

7 2.304 2.731 1.877 2.560 1.963 2.389 1.877 15.701 

8 2.475 2.560 1.877 2.645 2.048 1.707 1.963 15.275 

9 2.389 2.901 2.048 2.731 1.963 2.133 1.963 16.128 

10 2.219 2.987 1.877 2.304 1.963 2.133 1.963 15.446 

P10 - n 

1 1.963 2.475 1.963 2.133 1.963 2.475 2.133 15.105 

2 2.048 2.816 2.048 2.048 1.963 2.133 2.048 15.104 

3 1.877 2.816 1.963 1.963 1.963 2.048 2.048 14.678 

4 2.048 2.645 1.963 1.707 1.877 1.963 2.219 14.422 

5 1.963 2.901 2.048 2.389 1.877 2.048 2.133 15.359 

6 2.133 2.816 1.877 1.621 1.792 2.219 1.963 14.421 

7 2.133 2.816 1.963 1.707 1.707 2.048 2.048 14.422 

8 1.963 3.157 1.963 1.621 1.877 2.133 1.877 14.591 

9 1.877 2.731 1.877 1.536 1.877 2.048 1.877 13.823 

10 2.133 3.157 1.963 1.963 1.877 2.048 1.792 14.933 

P10 - t 

1 2.219 3.755 2.389 1.792 2.048 2.219 1.963 16.385 

2 2.304 3.328 2.389 2.219 1.707 2.304 1.877 16.128 

3 2.304 3.243 2.560 1.963 1.877 1.792 2.133 15.872 

4 2.133 3.413 2.475 2.133 1.877 2.304 1.877 16.212 

5 2.304 3.157 2.560 2.048 1.877 2.219 2.133 16.298 

6 2.304 3.157 2.475 1.963 1.963 1.963 1.963 15.788 

7 2.048 3.072 2.475 2.304 1.792 2.133 1.963 15.787 

8 2.133 2.901 2.560 2.048 1.963 2.048 2.133 15.786 

9 2.389 3.584 2.475 1.963 1.792 2.219 1.877 16.299 

10 2.304 2.987 2.645 2.133 1.877 2.304 1.963 16.213 
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Total duration [s] 

4713.3
91 

 
Table 4.1 – Duration of each instance 

As we can see in the table, the sentences have been chosen in such a way that they are all of 

similar length. We can see that on average the person with the number 2 had the longest sentences 

in terms of time and the person with the number 7 had the shortest sentences in terms of time. This 

can also be seen in Fig. 4.2 below. 

 
Fig. 4.2 – Minimum, average and maximum values of time instances as a function of sentence 

 

The minimum is represented by blue, the average is represented by yellow and the 

maximum is represented by red. It can be seen that sentence number 1(A came the result of the test) 

has the highest minimum value of 2.048 seconds, and is also the only one with a minimum value of 

more than 2 seconds. The smallest minimum value is given by sentences 5(It got very high), 7(I 

closed the door), 8(I turned off the light) and 9(I am very well) with a value of 1.365 seconds. The 

highest average value also belongs to sentence number 1, with a value of 2.743 seconds. The only 2 

sentences with an average length of only 2 seconds are sentence 8 and sentence 9.  It is likely that 

sentences 8 and 9 are quite common for speakers and therefore have an average length of less than 2 

seconds. Sentence number 1 also has the highest maximum duration, which is 3.84 seconds. The 

smallest and only maximum that is below 3 seconds is sentence number 8. This may also be due to 

its colloquial expression. 

 
Fig. 4.3 – Minimum, mean and maximum values of time instances as a function of the emotion conveyed. 

 

In Fig. 4.3 above we can see the sentence lengths by sentence. Happy emotion is represented 

with blue, neutral emotion is represented with yellow, and sad emotion is represented with red. 

Even though we would expect sad sentences to be much longer than happy or neutral sentences, we 

can see that they are about the same length. If we consider the minimum, all 3 emotions are equal 

with a sentence length of 1.365 seconds. When we consider the average length, the sad emotion is 
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the longest with a length of 2.324 seconds followed by the happy emotion with 2.254 seconds and 

finally the neutral emotion with 2.155 seconds. The longest maximum value belongs to the happy 

emotion with a length of 3.84 seconds, followed by the two remaining emotions neutral and sad 

with 3.755 seconds. After this analysis, we can say that we can't categorize a sentence by emotion 

according to its length 

 
Fig. 4.4 – Minimum, average and maximum values of time instances by person/voice 

 

From Fig. 4.4 above we can analyse by person the minimum, average and maximum. The 

minimum is represented with blue, the average is represented with yellow and the maximum is 

represented with red. We can see that both the minimum, average and maximum values have the 

highest values for person number 2 with the values corresponding to the minimum of the average 

and the maximum: 2.133 seconds, 2.876 seconds and 3.84 seconds. The lowest value for the 

minimum sentence duration is person 4 and person 7 with 1.365 seconds. The lowest value, and the 

only one that falls below 2 seconds for the average value, belongs to person number 5. The 

minimum of the maximum duration also belongs to person number 5 with a value of 2.731 seconds. 

 

 
Fig. 4.5 – Difference between maximum and minimum value of time instances by person/voter 

 

In Fig. 4.5 above explains the difference between the maximum and minimum sentence 

lengths for all individuals. There is quite a big difference because sentence number 1 is longer than 

sentence number 9 which on average is the shortest. We can see that for persons 1, 2, 3, 4 and 6 the 

time difference is in the range of 1.6 seconds and 1.8 seconds. Person number 7 has a delta of 1.536 

seconds, but the person with the smallest delta is person number 5, who has a deviation of only 1.28 

seconds. 
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Fig. Fig. 4.6 – Total sentence time by person in percent 

 

In Fig. 4.6 shown above, we have the total seconds per person represented in percentages. We 

can see that the percentages are roughly equal for all people except person number 2, who has 3 

percent more than the next person. 

 
Implementation 
 

Python is a multi-paradigm dynamic programming language created in 1989 by Dutch 
programmer Guido van Rossum. Van Rossum is still today a leader in the software 
development community working to perfect Python and its core implementation, CPython, 
written in C. Python is a multi-purpose language used for example by companies like Google 
or Yahoo! for programming web applications, but there are also a number of scientific or 
entertainment applications programmed partly or entirely in Python. The growing popularity 
and power of the Python programming language has led to its adoption as the primary 
development language by specialist programmers and even to the teaching of the language in 
some university environments. For the same reasons, many Unix-based systems, including 
Linux, BSD and Mac OS X include the CPython interpreter out of the box. 

Python emphasizes cleanliness and simplicity of code, and its syntax allows developers 
to express some programmatic ideas in a clearer and more concise manner than in other 
programming languages such as C. In terms of programming paradigm, Python can serve as a 
language for object-oriented software, but also allows for imperative, functional or procedural 
programming. The typing system is dynamic and memory management is automatic via a 
garbage collector service. Another advantage of the language is the existence of a large 
standard library of methods. The reference implementation of Python is written in C and is 
therefore called CPython. This implementation is free software and is managed by the Python 
Software Foundation [1]. 

 
In order to extract features we need to determine which audio files we want to extract. 

For example, for the CREMA database the following code was used: 
 

     directory = "D:/Doctorat_Toma/CREMA/" 
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    directory2= "D:/Doctorat_Toma/CREMA/MFCC/" 

    # put your own directory here 

    # directory to put our results in, you can change the name if 

you like 

    for it in os.scandir(directory): 

        if it.is_dir(): 

            directoryName = it.path 

            #resultsDirectory = directoryName + "/MPEG" 

 

            # make a new folder in this directory to save our 

results in 

            #if not os.path.exists(resultsDirectory): 

                #os.makedirs(resultsDirectory) 

 

            # MFCCs for every .wav file in our specified directory 

.csv SAVE 

            for filename in os.listdir(directoryName): 

                if filename.endswith('.wav'):  # only get MFCCs 

from .wavs 

                    # read in our file 

                    (rate, sig) = wav.read(directoryName + "/" + 

filename) 

                    directoryName_final = directoryName + "/" + 

filename 

where directory defines where the database is defined and directory2 defines the file 
where the features will be extracted. To identify all the ".waw" files, we see that we use the 
.endswith function to be able to search by the required file type. 

For MFCC we use the Python package called "python_speech_features" from which we 
choose the MFCC function. This function has the following parameters:  

sig - which is the signal used for feature extraction 

Fs - desired frequency in Hz 

Wl - or window length, is the length of the analysis window measured in seconds 

Ws - or window step, is the step between successive windows measured in seconds. 

L - is the number of MFCC coefficients 

M - is the number of filterbanks, 

N_fft = is the size of the fast Fourier transform. 

LF - is the minimum frequency 

HF - is the maximum frequency 
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alpha - is the pre-emphasis coefficient applied to the pre-emphasis filter 

Lf - number of cepstral parameters 

So the MFCC function will look like in the following example:  
python_speech_features.base.mfcc(sig, Fs, winlen=Wl, winstep=Ws, 

numcep=L, nfilt=M, nfft=N_fft, lowfreq=LF, highfreq=HF, 

preemph=alpha, ceplifter=Lf, appendEnergy=True, 

winfunc=numpy.hamming) 

 
To extract the coefficients of the CREMA database, we need to see how it is composed 

and we need to group the emotions into different classes. For example, in each sentence name 
in the CREMA database from position 39 to position 42 we have a grouping of 3 letters which 
can be 'ANG', 'DIS', 'FEA', 'HAP', 'NEU' or 'SAD' which correspond to the following emotions: 
nervousness, disgust, fear, happiness, neutral and sadness. The following code was used to 
group the emotions into the appropriate classes: 
if directoryName_final[39:42] == 'ANG': 

                       classNo = 1 

                    if directoryName_final[39:42] == 'DIS': 

                       classNo = 2 

                    if directoryName_final[39:42] == 'FEA': 

                       classNo = 3 

                    if directoryName_final[39:42] == 'HAP': 

                       classNo = 4 

                    if directoryName_final[39:42] == 'NEU': 

                       classNo = 5 

                    if directoryName_final[39:42] == 'SAD': 

                       classNo = 6 

 

For other databases, similar approaches have been used, for example for the SAVEE database, 

from position 33 to position 35 we have a grouping of 1 or 2 letters which can be 'a', 'd', 'f', 'h', 'n', 

'sa' or 'su' corresponding to the following emotions: nervousness, disgust, fear, happiness, neutral, 

sadness and surprise. 
if directoryName_final[33:34] == 'a': 

                        classNo = 1 

                    if directoryName_final[33:34] == 'd': 

                        classNo = 2 

                    if directoryName_final[33:34] == 'f': 

                        classNo = 3 

                    if directoryName_final[33:34] == 'h': 

                        classNo = 4 

                    if directoryName_final[33:34] == 'n': 

                        classNo = 5 

                    if directoryName_final[33:35] == 'sa': 

                        classNo = 6 

                    if directoryName_final[33:35] == 'su': 

                        classNo = 7 
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For the Emo-DB database, from position 33 to position 34 we have 1 letter which can be 'F', 

'W', 'L', 'E', 'A', 'T' or 'N' which are from German and correspond to the following emotions: 

happiness, anger, boredom, disgust, anxiety/fear, sadness and neutral. 

 
if directoryName_final[33:34] == 'F': 

                        classNo = 1 

                    if directoryName_final[33:34] == 'W': 

                        classNo = 2 

                    if directoryName_final[33:34] == 'L': 

                        classNo = 3 

                    if directoryName_final[33:34] == 'E': 

                        classNo = 4 

                    if directoryName_final[33:34] == 'A': 

                        classNo = 5 

                    if directoryName_final[33:34] == 'T': 

                        classNo = 6 

                    if directoryName_final[33:34] == 'N': 

                        classNo = 7 

 

For the Ravdess database, the class number is in the sound title and is found from position 57 

to 59. This is translated into code as follows: 
classNo = int(directoryName_final[57:59]) 

As we know, the Romanian database has only 3 emotions: happiness, neutral and sadness. To 

create the classes for these 3 emotions, we use all the file names of an emotion is found from 

position 39 to 40 where 'f' represents the emotion of happiness, 'n' represents the emotion of neutral, 

't' represents the emotion of sadness. The code for these will be: 
if directoryName_final[39:40] == 'f': 

                        classNo = 1 

                    if directoryName_final[39:40] == 'n': 

                        classNo = 2 

                    if directoryName_final[39:40] == 't': 

                        classNo = 3 

 

Now that we've seen how all the databases are organized, let's shift our attention to the 

remaining feature extractors. To use LPC we imported the "spafe" packet. The coefficients needed 

for LPC are similar to those used by MFCC. The coefficients are: sig, Fs, Wl, Ws, L where now is 

the LPC model order and alpha. The code in python will be: 
lpc_coef = lpc(sig, Fs, order=L, win_len=Wl, win_hop=Ws, 

pre_emph_coeff=alpha, win_type=numpy.hamming) 

 

To use GFCC we imported the "spafe" package. The coefficients needed for GFCC are 

similar to those used by MFCC. The coefficients are: sig, Fs, Wl, Ws, L where now is the order of 

the GFCC model, M, N_fft, LF, HF, Lf, alpha and D which is the type of discrete cosine transform 

is used. The code in python will be: 

 
gfcc_coef = gfcc(sig, Fs, win_len=Wl, win_hop=Ws, num_ceps=L, 

nfilts=M, nfft=N_fft, low_freq=LF, high_freq=HF, 

pre_emph_coeff=alpha, lifter=Lf, use_energy=True, 

win_type=numpy.hamming, dct_type=D) 
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To use MSRCC we imported the "spafe" package. The coefficients needed for MSRCC are 

similar to those used by GFCC. The coefficients are: sig, Fs, Wl, Ws, L where now is the order of 

the MSRCC model M, N_fft, LF, HF, Lf, alpha and D which is the type of discrete cosine transform 

is used. The code in python will be: 
msrcc_coef = msrcc(sig, Fs, win_len=Wl, win_hop=Ws, num_ceps=L, 

nfilts=M, nfft=N_fft, low_freq=LF, high_freq=HF, 

pre_emph_coeff=alpha, lifter=Lf, use_energy=True, 

win_type=numpy.hamming, dct_type=D) 

 

To use the NGCC we imported the "spafe" package. The coefficients required for NGCC are 

similar to those used by GFCC and MSRCC. The coefficients are: sig, Fs, Wl, Ws, L where now is 

the NGCC model order, M, N_fft, LF, HF, Lf, alpha and D which is the type of discrete cosine 

transform is used. The code in python will be: 
ngcc_coef = ngcc(sig, Fs, win_len=Wl, win_hop=Ws, num_ceps=L, 

nfilts=M, nfft=N_fft, low_freq=LF, high_freq=HF, 

pre_emph_coeff=alpha, lifter=Lf, use_energy=True, 

win_type=numpy.hamming, dct_type=D) 

 

If we look at the mel feature, we used the "librosa" package where we used the 

melspectogram function which has the following coefficients: sig, Fs, N_fft, hop_length which is 

the number of samples between 2 frames, WL, Wt being the type of window used, pad_mode being 

the type of sound attenuation on the edges of the frame, power being the exponent of the magnitude 

of the mel spectogram and n_mels being the number of samples that are extracted to create the mel 

spectogram feature. The code in python will be: 
mel_coef = melspectrogram(y=sig, sr=Fs, S=None, n_fft=2048, 

hop_length=512, win_length=None, window='hann', center=True, 

pad_mode='constant', power=2.0, n_mels=128) 

 

To arrive at the chroma feature, we used the "librosa" package where we used the chroma_stft 

function which has the following coefficients: sig, Fs, N_fft, hop_length, WL, Wt, pad_mode, and 

n_chroma being the number of points that are extracted to create the chroma spectrogram feature. 

The code in python will be: 
chroma_coef = chroma_stft(y=sig, sr=Fs, S=None, norm=numpy.inf, 

n_fft=2048, hop_length=512, win_length=None, window='hann', 

center=True, pad_mode='constant', tuning=None, n_chroma=12) 

 

To calculate the fundamental frequency characteristic F0, we used the "pandas" package 

where we used the yin function which has the following coefficients: wav_data being the file name, 

sr being the sampling frequency, fmin and fmax, being the minimum and maximum frequency. The 

code in python will be:  
f0 = librosa.yin(wav_data, sr=48000, fmin=50, fmax=2100) 

 

For F0, for each database a differentiation was made for the gender of the speaker to better see 

the differences between male and female speakers and the differences between the two categories. 

For example for the Emo-DB database the code will be: 
if filename[0:2] == '03': 

                        gender = 2 

                    if filename[0:2] == '08': 
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                        gender = 1 

                    if filename[0:2] == '09': 

                        gender = 1 

                    if filename[0:2] == '10': 

                        gender = 2 

                    if filename[0:2] == '11': 

                        gender = 2 

                    if filename[0:2] == '12': 

                        gender = 2 

                    if filename[0:2] == '13': 

                        gender = 1 

 

So far we've seen all the feature extractors transposed into Python code. To have a result you 

also need a classification. For that we need to see how the k-NN classifier is implemented. It took 

the package "sklearn" from where we used the function KNeighborsClassifier with the following 

coefficients: n_neighbors representing the number of neighbors, weights, representing the weight of 

each neighbor. Leaf_size represents the size of the leaves. This can affect the speed of construction 

and query as well as the memory required to maintain the tree. The optimal value depends on the 

nature of the problem.P represents the power parameter for the Minkowski metric. When p = 1, this 

is equivalent to using the manhattan distance (l1), and the Euclidean distance (l2) for p = 2. For 

arbitrary p, the Minkowski distance is used. The metric refers to the type of distance calculated. 

Minkowski distance is a metric in a normed vector space, which can be considered a generalisation 

of both Euclidean distance and Manhattan distance. It is named after the German mathematician 

Hermann Minkowski. The code for k-NN would look like this: 
KNeighborsClassifier(n_neighbors=5, weights='uniform', 

algorithm='auto', leaf_size=30, p=2, metric='minkowski', 

metric_params=None, n_jobs=None) 

 

To integrate the cross validation as well, we used the cross_val_score function which we set 

to do 10 times the cross validation, divided into 10 samples. The code for this will be:  
result_rkf = cross_val_score(estimator=pipe, X=X, y=y, 

scoring='accuracy', cv=RepeatedKFold(n_splits=10, n_repeats=10)) 

 

SVC(C=100, kernel='rbf', degree=3, gamma=0.1, coef0=0.0, shrinking=True, 

probability=False,  

tol=0.1, cache_size=200, class_weight=None, verbose=False, max_iter=- 1, 

decision_function_shape='ovr', break_ties=False, random_state=None) 

 

The implementation is based on libsvm. The matching time scales at least quadratically with 

the number of samples and may be impractical beyond tens of thousands of samples. Multiclass 

support is handled according to a one-to-one scheme.  

Vector support machines are effective in large spaces. It uses a subset of training points in 

the decision function (called support vectors), so it is also efficient in memory. Different kernel 

functions can be specified for the decision function. Common kernels are provided, but it is also 

possible to specify custom kernels. 

When training an SVM with the RBF kernel, two parameters must be considered: C and 

gamma. The C parameter, common to all SVM kernels, changes the misclassification of training 

examples with the simplicity of the decision surface. A low C makes the decision surface smooth, 

while a high C targets the correct classification of all training examples. gamma defines how much 
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influence a single training example has. The higher the gamma, the closer the other examples need 

to be to be affected.  

The second parameter of the function specifies the type of kernel that will be used in the 

algorithm 'linear', 'poly', 'rbf', 'sigmoid' or 'precomputed'. The degree of the polynomial kernel 

function is taken into account only by the 'poly' type. Coef0 is an independent term in the kernel 

function, being significant only in 'poly' and 'sigmoid' type. Probability is set to 'False' because it is 

not desired to activate probability estimates. The stopping tolerance criterion is considered to be 

0.1. The size of the kernel cache has a strong impact on the run times for larger problems. 

'class_weight' sets the C parameter of class i to class_weight[i]*C for the SVC. If not given a value, 

all classes should have weight one. The 'balanced' mode uses the values of y to automatically adjust 

the weights inversely proportional to the class frequencies in the input data as n_samples / 

(n_classes * np.bincount(y)). If verbose output is enabled, it may not work correctly in a multi-class 

context. The decision function depends on a particular subset of the training data, called support 

vectors [2]. 
LogisticRegression(C=50, multi_class = 'multinomial', penalty= 'l1', solver = 'saga', tol=0.1) 

Some penalties may not work with some resolvers. The chosen penalty norm is L1. Lasso 

regression (or L1 regularization) is a regularization technique that penalizes large-valued, correlated 

coefficients. It introduces a regularization term (also called a penalty term) into the sum-squared 

error loss function of the model. This penalty term is the absolute value of the sum of the 

coefficients. 

The algorithm used in the optimization problem is "lbfgs". In order to choose the optimal 

solution, multiclass prediction and the possibility of intercepting multinomial losses are taken into 

account, thus choosing 'saga'. 

These are some of the essential parameters we may encounter when using logistic regression 

in scikit-learn. The actual parameters may vary slightly depending on the specific version of scikit-

learn we are using. To get the most accurate and up-to-date information, it is always a good idea to 

consult the official documentation for the version we are working with [3]. 
O RandomForestClassifier(n_estimators=100,criterion='gini', 

                                 max_depth=None, 

min_samples_split=2, 

                                 min_samples_leaf=1, 

min_weight_fraction_leaf=0.00, 

                                 max_features='auto', 

max_leaf_nodes=None, min_impurity_decrease=0.0, 

                                 bootstrap=True, 

oob_score=False, 

                                 n_jobs=None, 

random_state=None, verbose=0, warm_start=False, 

                                 class_weight=None, 

ccp_alpha=0.0, max_samples=None) 

 

Random forest is a metaestimator that fits a number of decision tree classifiers on different 

subsamples of the dataset and uses averaging to improve predictive accuracy and control 

overfitting. The forest trees use the best splitting strategy, i.e. equivalent to passing splitter="best" 

to the basic DecisionTreeRegressor. The subsample size is controlled with the max_samples 

parameter if bootstrap=True (default), otherwise the entire dataset is used to construct each tree. 

The number of trees in the forest is taken to be 100. The function for measuring the quality 

of a data split, the 'criterion' has the criterion 'gini', for the Gini impurity for the Shannon 

information gain. This parameter is tree specific. 
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The minimum number of samples required to split an internal node is chosen to be 2, and the 

minimum number of samples required to be at a leaf node is 1. A split point at any depth will only 

be considered if it leaves at least min_samples_leaf training samples in each of the left and right 

branches. This can have the effect of smoothing the model, especially in regression. 

The 6th parameter represents the minimum weighted fraction of the total sum of weights 

(from all input samples) required to be at a leaf node. Samples have equal weight when the 

sample_weight parameter is not provided. The number of features to consider when looking for the 

best split is considered auto. The best nodes are defined as a relative reduction of impurities. It is 

considered 'None', then an unlimited number of leaf nodes are available. A node will be split if this 

splitting induces an impurity decrease greater than or equal to the value of the next parameter. 

Bootstrap samples are used when constructing trees. The number of jobs to run in parallel is chosen 

1. If this parameter 'random_state' is set, it ensures reproducibility by setting random seeds for 

random number generation. 

These parameters can be adjusted to tune the performance of the Random Forest model 

based on the specific characteristics of the dataset and the problem at hand. 

 

Results 

 

 
Fig. 6.4 – Correct classification rate for the CREMA database using the NGCC features extractor. 

 

From fig. 6.4 we can extract that k-NN has the lowest correct classification rate with a 

maximum of 40.4% for 26 and 28 features. The minimum for k-NN is 38.39% for 38 features. K-

NN is the minimum for each number of features. LR has an approximately upward slope starting 

from a minimum of 42.38% for 26 features and then increasing to a maximum of 43.02% for 36 

features. LR has the second worst result for each number of characteristics. RF shows a jump of 

about 4 percent over LR and ranks 2nd in this statistic for the best correct classification rate. The 

results for LR represent a downward slope but with values not too far apart from one feature to 

another, with a maximum for 26 features with a value of 47.59% and a minimum value of 46.73% 

for 38 features. The SVM has the best accuracy for each number of features, showing an upward 

slope, and is also the only one to achieve a correct classification rate of over 50%. The maximum 

for SVM is 50.08% for 38 features and a minimum of 49.18 for 26 features. 
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Fig. 6.13 – Correct classification rate for the Ravdess database using the MFCC features extractor. 

Moving on to another database, namely Ravdess, we see a fairly strong change in the correct 

classification rate. As we can see the worst classifier in terms of accuracy becomes LR, which 

remains roughly constant around 45%, with a minimum value of 44.11% for a number of 26 

features and a maximum value of 45.47% for a number of 32 features. K-NN managed to 

outperform LR but also to come close to RF, with a minimum value of 58.53% for 28 features and a 

maximum value of 60.28% for 36 features. The RF classifier ranks 2nd in terms of accuracy, with 

the results remaining approximately equal for all feature numbers. The RF had a minimum of 

60.6% for a number of 26 features, but also a maximum of 61.91% for 36 features. The best 

classifier in terms of correct classification rate and the only classifier that managed to pass an 

accuracy of 70% is the SVM. The results of the SVM classifier describe an upward slope starting 

from 26 features with an accuracy of 75.9% and reaching 39 features with an accuracy of 77.94%. 

 

 
Fig. 6.23 – Correct classification rate for the SAVEE database using the MFCC features extractor. 

 

Fig. 6.23 shows the accuracy of the SAVEE database using the MFCC feature extractor for 

the LR, RF, SVM and k-NN classifiers. For the LR classifier, an improvement over the CREMA 

and Ravdess databases can be seen, where it had an accurate classification rate below 50%. LR has 

a minimum accuracy value of 58.5% for 26 features and a maximum value of 63.2% for a total of 
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32 features.  RF describes an upward slope, starting from a minimum value of 64% for 26 features 

and reaching a maximum value of 67.48% for 36 features. On the other side is the k-NN classifier 

which describes a downward slope, starting from a maximum value of 68.99% for 28 features, 

going down to a minimum value of 64.89%. The best classifier in terms of accuracy remains the 

SVM, with maximum values for each number of features. The SVM has a minimum value of 

69.96% correct classification rate for 26 features and a maximum value of 74.71% for 38 features. 

 

 
Fig. 6.39 – Correct classification rate for the Emo-DB database using the MSRCC feature extractor. 

 

In fig. 6.39 we are shown the accuracy for the Emo-DB database using the MSRCC feature 

extractor and all classifiers used so far. We can see an increase for the k-NN classifier and 

maintenance for the other three classifiers compared to previous experiments for the same database. 

The classifier with the worst results in terms of accuracy is LR, with a minimum value of 68.37% 

for 28 features and a maximum of 69.96% for 34 features. The next classifier in terms of the rate of 

accurate classification is k-NN, which although it has had a fairly large increase over previous 

results only ranks 3rd. This classifier has a minimum accuracy of 70.76% for 36 features and a 

maximum value of 74.2% for 26 features. In second place in terms of accuracy is the RF classifier 

with a minimum value of 73.34% for 30 features and a maximum value of 74.42% for 32 features. 

The best classifier in terms of accuracy is the SVM, the only classifier with a correct classification 

rate of over 80%. The lowest accuracy value for SVM is 81.29% for 36 features, but the highest 

accuracy value is given for 28 features with a value of 83.6%. 
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Fig. 6.46 – Correct classification rate for the Romanian database using the NGCC features extractor. 

 

Fig. 6.46 shows the correct classification rate for the Romanian database, using the NGCC 

features extractor for all classifiers so far. Compared to the previous experiment, we can see that all 

the correct classification rates have been increased, the order of the classifiers changes only 

between the first 2 classifiers compared to the previous test. The worst correct classification rate 

belongs to the LR classifier for all classifier numbers. It can also be seen that the results for LR 

show an upward slope. The minimum value for the correct classification rate of the LR classifier is 

75.13% for 26 features, and the maximum value for LR is 77.11% for 38 features. The next most 

accurate classifier is also the RF classifier with a minimum classification rate of 92.7% for 26 

classifiers and a maximum value of 93.77% for 30 classifiers. The next classifier is k-NN, which 

has a minimum classification rate of 93.34% for 38 classifiers and a maximum classification rate of 

96.46%. The best classifier in terms of accuracy is SVM, with a minimum classification rate of 

96.04% for 26 features, and a maximum value of 96.63% for 36 features. 

 

 
Fig. 6.52 – Correct classification rate for the Romanian database using the NGCC feature extractor as well as F0, 

Chroma and Mel features. 

 

Fig. 6.52 shows the case where we change the MFCC feature extractor to NGCC. With this 

change we can observe both a decrease in the difference between SVM* and SVM and a change in 
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the combination of RF and RF* where RF has the best correct classification rate in 6 out of 7 cases, 

in the other case both have the same accuracy value. If we look at the case where SVM* has higher 

values than SVM, we can see that SVM* has a minimum value of 96.61% for 26 features, but also a 

maximum value that exceeds the 97% threshold and reaches a value of 97.08% for 36 features. 

For the Romanian database, the most optimal combination of extractor and classifier in 

terms of correct classification rate is between NGCC and SVM for 36 features, if we also consider 

the features F0, Chroma and Mel. If we also consider time, the most optimal combination would be 

NGCC with k-NN for 30 features. 

From all the results so far, we decided to create models for the NGCC feature extractors with 

30 features, NGCC with 36 features, MFCC with 36 features and the k-NN and SVM classifiers. In 

total 6 models will be created. For these models 80% of the data was used for training and 20% for 

testing. For testing, sounds 3 and 8 were chosen from each class and the rest for training.  

 
Fig. 6.53 – Results for each model 

 

Fig. 6.53 shows the current classification rates for each model. We can see that for training, 

the correct classification rate is sun 100% for all cases except when we use the MFCC with 36 

features and the SVM classifier. The lowest correct classification rate for training belongs to the 

NGCC model with 30 features and k-NN with an accuracy of 82.44%. For this model is also the 

lowest correct classification rate for testing with an accuracy of 73.81%. The highest correct 

classification rate belongs to the model using MFCC as feature extractor with 36 features and SVM 

as classifier. 
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Fig. 6.54 – Confusion matrix for MFCC-36 and SVM, for the first 3 speakers 
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Fig. 6.55 – Confusion matrix for MFCC-36 and SVM, for the last 4 speakers 

 

Because the MFCC model with 36 features and SVM performed best, we created the 

confusion matrix for the test results in Fig. 6.54 and 6.55. We chose to split the confusion matrix 

into 2 to aid readability. It can be seen that two speakers had 100% correct classification, 2 other 

speakers, one male and one female, had only one misidentified sentence. In terms of classification, 

the last 2 speakers had 6 misidentified sentences. One male speaker was misclassified as a female 

speaker for 2 sentence instances. From what we observed, a person's gender does not influence the 

rate of correct classification. The female speaker was misclassified for the sentence "I'm very 

well.", said in a cheerful tone, which was mistaken for the sentence "The interpretation was 

wrong.", said in a neutral tone. The male speaker who had only one misclassified sentence was 

misclassified for the sentence "The door is closed." Spoken in a neutral tone, which was classified 

as "It has dropped a lot" spoken in the same tone. The most common misclassification of emotion 

was from neutral to sad. The least common misclassification of emotion was from happy to sad. 
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General conclusion 
 

As a result of our work, we have managed to create a new database that can be used for 

research in the emotion recognitions field. The scope of the database is to come as a help for robots 

to understand the human primary emotions. With this database we can start the development of 

emotional intelligent robots that can understand the emotional subtext in the Romanian language. 

The database comes as a help because it is first of its kind in recorded in the Romanian language. 

The emotional database has 3 different emotions: happy, neutral and sad. There are 10 sentences 

that can have different meanings depending on the emotion that is used alongside with. The 

sentences are "The test results are in." , "I'm out of medication." , "The test is positive." , "The 

interpretation was wrong." , "It's grown a lot." , "It's gone down a lot." , "I closed the door on him." 

, "I turned off the light." , "I'm very well." , "The keys are in the door.". The people recording the 

sentences were 4 males and 3 females. The age of the subjects was between 24 and 28 at the 

moment of registration. Each of the presented sentences have a different meaning for each emotion 

that is incorporated with the sentence. With those sentences understood by a robot, including all 

their meanings, the bots can come as a physical and mental help for humans. 

Having done this database, another barrier between humans and robots is taken down, as 

robots can now start to understand our emotions and can act accordingly. Without the emotional 

feature, robots can be perceived as cold and distant. Sometimes the robots make the wrong 

decisions even if they understood the sentence transmitted. This usually happens when the message 

is transmitted through the paraverbal language that includes emotions and body language. 

Here comes a limitation of the database. The people were very close in age and for a more 

reliable database there should be more people involved that could expand the age gap. In this 

database there should be registered also children and elder citizens. As Romania is a diverse country 

from the diversity and ethnographic point of view, people from all over the country should be 

included in the database in order to vary the accents and the dialects.  

Another limitation of the database comes in the number of registered emotions. We can see 

that only 3 emotions are used. From the studies of emotions we saw that there are numerous 

emotions that a human being can experience. Having more emotions would help robots and 

machines to understand more of our behaviour. 

This thesis brings contributions to the field of emotion recognition. First of all, the newly 

created database in Romanian language opens new opportunities of research.  Having a new 

database in a language that was not included in the emotion recognition field is a great achievement. 

Studies can be done to see how similar a country can be with others in terms of emotions. It can 

also be studied the easiness of transition from one emotion to another and to see how people from a 

certain country can shift their emotions. 
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 Secondly, a great contribution that comes with this thesis is the study done in comparison 

between emotional databases in other languages and the newly created database in Romanian 

language. It is possible to see that for different languages, different feature extractors give the best 

results. It is interesting to see how much does the  also fluctuate when the emotions do change. 

 Next, in addition to the analysis performed, we have also added the characteristics for , 

Mel and Chroma to see if they will improve the correct classification rate. It is fascinating to 

observe that in some cases the correct classification rate went down after adding the mentioned 

characteristics in the analysis, but for our new database the correct classification rate has improved. 

It was also interesting to see that by only using the previous mentioned characteristics, for the 

Romanian database the correct classification rate was between 35% for Chroma and 50% for . 

Finally, if we talk about the highest correct classification rate for the Romanian database, we 

have obtained a maximum of 97.08% using NGCC as feature extractor and SVM as classifier. In 

order to obtain this result, we have also added the following features to help in the classification: , 

Mel and Chroma. 

Shortly, the main contributions of this thesis can be synthesized as the following points: 

• Gathered volunteers and managed to change their emotions in order to create an 

emotional database. 

• Created an emotional database in Romanian that can be used for research in the 

robotics field. 

• The emotional database created has 3 emotions: happy, neutral and sad, which 

are the most common emotions in our everyday life. 

• Tested multiple databases in different languages to discover that for different 

languages, the best algorithm differs.  

• The algorithms created are composed of different feature extractors and 

classifiers, that in their turn can also be adjusted with the help of different 

specific parameters. 

• Created an optimized algorithm, based on the tests done on the preexisting 

databases, for the database in Romanian language that has an accuracy 

comparable with the accuracy for speech recognition. 

• Created a stronger bonding between humans and robots as robots can now 

surpass random guessing when the audio message transmitted is via emotions. 

• Robots can now come as a help when talking about mental health monitoring and 

social interactions. 
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